Prospective Therapeutic Strategies for Cervical Cancer

Nor Aini Lubis, MHD ZAINa, Khadija Isa, SHESHEb, Mohd Nasharudin, RAZAKc, Noorzaileen Eileena, ZAIDIb, Mariatulqabtiah, ABDUL RAZAKce*

aFaculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
b,c,eFaculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
dInstitute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

e*mariatulqabtiah@upm.edu.my

Abstract – Cervical cancer is one of the leading causal cancer-related fatalities in the world. Cervical cancer patients can be treated by conventional treatment such as surgery, radiotherapy, chemotherapy, medications and combination treatments. Currently, more targeted treatments are being developed to cure cervical cancer. The treatments include immunotherapy, virotherapy and gene therapy which will be discussed in this paper. In immunotherapy, the synergy of CTLA-4 suppression and PD-1/PDL-1 immune checkpoint inhibition targeting their corresponding pathways enhanced the human immune system resulting a promising treatment effects. Oncolytic viruses such as Newcastle disease virus selectively infect and kill cancerous cells/tissues without harming normal cells/tissues. This character has made them a potential modality in combating cancer which popularly known as oncolytic virotherapy. Gene therapy delivers modified genetic materials to the target cancer cells via viral and non-viral vectors. It is used to target the abnormal gene, to increase cells’ susceptibility towards drugs or conventional therapy, to induce tumour cells apoptosis, to enhance tumour cell immunogenicity recognition and to inhibit the oncogene expression. The objective of this minireview is to add to the general knowledge on aforementioned therapeutic strategies against cervical cancer.

Keywords: cancer, cervical, immunotherapy, oncolytic, gene therapy

Introduction

Cervical cancer is a cancer that developed in woman’s cervix and one of the leading causal cancer-related fatalities in the world. Cervical cancer is asymptomatic during early stage, otherwise it can be treated via surgery or radiation upon detection. Infection by human papillomavirus (HPV) strains HPV-16 and HPV-18, also known as the high-risk HPVs, is the most common cause of cervical cancer. Any activities which lead to the exposure of HPV infection such as having multiple sexual partners and engaging in sexual contact at early age in life may also cause the disease (National Health Science, 2018). Other possible reasons of cervical cancer include aberrant activation of hepatocyte growth factor/c-mesenchyal-epithelial transition (HGF/c-Met) signalling pathway (Boromand et al., 2017) and overexpression of microRNA-9 (miR-9) (Zhang et al., 2018). Most cervical cancer cases are preventable by routine screening and vaccination, nonetheless, metastatic cervical cancer often results in poor prognosis (Yung et al., 2013). Screening of the cancer for early detection can be done via PAP smear test where the general practitioner would swab a small sample of cells from the cervix area and observed for any abnormalities under microscopes (National Health Service, 2018). Cervical cancer may be treated via surgery, radiotherapy, chemotherapy, medications and other targeted treatments including combination therapy (American Cancer Society, 2018; National Health Service, 2018). This
mini review will be focusing on three therapeutic strategies, namely immunotherapy, oncolytic virotherapy and gene therapy. The exploration of these strategies may add to the general knowledge on aforementioned therapeutic strategies against cervical cancer even to those who are not in the field of medicine.

Immunotherapy
Cancer immunotherapy is defined as the utilization of naturally derived or synthetically generated components to stimulate or enhance body immune response to fight against cancer. Immunotherapy is able to restore the damped anti-cancer immune response (Drake et al., 2014). The general concept of immunotherapy is to achieve a response against tumour by stimulating immune defences, which are mostly impaired among cancer patients (Disis, 2014; Mandal and Chan, 2016).

The roles of immune checkpoints in regulating immunity
The key requirement of immune system is crucial for self-tolerance, to prevent the immune cells from attacking cells indiscriminately. To prevent autoimmunity, activation of immune checkpoints pathway is vital to regulate activation of T cells at multilevel steps during an immune response (Fife and Bluestone, 2008; Goldrath and Bevan, 1999). Immune checkpoints are referred as the plethora of inhibitory pathways of the immune system for the maintenance of self-tolerance and immune homeostasis (Pardoll, 2012).

Under normal conditions, a balance between T cell activation and the inhibitory pathways are used to prevent autoimmunity or immune deficiency. Pardoll (2012) described that the expression of immune checkpoint proteins could be dysregulated by tumours as an important immunity resistance mechanism. In context of cancer condition, overexpression of inhibitory T cell receptors on their own cell surface permits inhibition of anti-tumour immune response. In most cancer immunotherapies, cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed death receptor-1 (PD-1) are the main inhibitory receptors that being expressed on T cells (Chen and Flies, 2013; Pardoll, 2012), also referred as immune checkpoints that belong to immunoglobulin superfamily (Brunet et al., 1987; Ishida et al., 1992).

CTLA-4 immune checkpoint expressed on the surface of T cells interacts with ligand cluster of differentiation 80 (CD80) and for PD-1, it interacts with its programmed death ligand-1 (PDL-1) on antigen presenting cells (APCs). According to Fife et al. (2009), CTLA-4 drives the immune checkpoint inhibitors, as it halts potentially autoreactive T cells at the initial stage of naïve T cell activation. In contrast, PD-1 pathway which primarily occurs in peripheral tissues, will regulate the previously activated T cells at the later stages of immune response. Expression of PD-1 also being presented on B cells, dendritic cells (DCs), monocytes and natural killer (NK) T-cells upon activation (Brunet et al., 1987; Riley, 2007).

Functions of PD-1 and its ligand, PDL-1, in cervical cancer
High expression of PDL-1 is commonly observed on cell surface of solid tumours. This expression has a large proportion on tumour infiltrating lymphocytes (TILs) (Ahmadzadeh et al., 2009). It has been reported that expressions of PDL-1 are 95% of cervical intraepithelial neoplasia and 80% of squamous cell carcinomas (Mezache et al., 2015). Within tumour microenvironment, PDL-1 is expressed for oncogenic signalling or induced to inflammatory cytokines (Jenkins et al., 2018). The complexity of PDL-1 neither guarantees nor precludes response to PD-1/PDL-1 blockade. However, murine studies had confirmed the contribution of PDL-1 on both tumour cells and immune cells are vital to determine response to PD-1 blockade (Figure 1(A)) (Juneja et al., 2017, Lau et al., 2017).

Discovery of PD-1 and PDL-1 pathways emerges as a result of the necessity to control the degree of inflammation at the site of antigen expression. The cytokines produced by T cells will modulate PDL-1 expression in tissues hence activate the PD-1 proteins (Mahoney et al., 2015). This condition will lead to immune tolerance, where the immune system loses the control to mount an inflammatory response.
Figure 1: (A) Immune checkpoint, programmed death receptor-1 (PD-1) expressed on T cell surface binds to its programmed death ligand-1 (PDL-1) on tumour cell. (B) Nivolumab inhibits the interaction of PD-1 to its ligand PDL-1 (e.g. Lau et al., 2017; Topalian et al., 2014).

PD-1/PDL-1 immune checkpoint inhibition
Pharmacologically, the inhibitors of PD-1/PDL-1 prevent the interaction between PD-1 and its ligand, PDL-1, thus facilitating a positive immune response to kill the tumour. Several studies have indicated that antibodies that inhibit PD-1 and PDL-1 have prognostic capacities on many advanced malignancies and an efficient way to maintain the function of effector T cells. Inhibition of PD-1/PDL-1 interactions by specific antibodies may serve as an effective anti-tumour therapy. PD-1 pathway blockades will restore the activity of anti-tumour T cells that had become quiescent (Buchbinder and Desai, 2016).

Monoclonal antibodies (mAbs) have been used as immune checkpoint inhibitors that inhibit the interaction of PD-1/PDL-1 pathway and overcome the conventional therapy for cancer treatment. mAbs are able to reduce solid tumours, suppress advanced tumours and metastasis, and diminish the toxicity within tolerable limits, contributing to the survival of cancer patients (Naidoo et al., 2015; Topalian et al., 2014). The checkpoint inhibitors are designed to either block PD-1 or PDL-1, hence turn on T-cell mediated immunity (Figure 1(B)).

PD-1/PDL-1 immune checkpoint inhibitor against cervical cancer
On December 2014, the Food and Drug Administration (FDA) had approved Nivolumab (Opdivo, Bristol-Myers Squibb), for treatment of patients suffers from metastatic or unrespectable melanoma (Alsaab et al., 2017). Nivolumab is PD-1 specific monoclonal antibody and it prevents the interaction of PDL-1 towards PD-1. In a clinical trial conducted by Hollebecque et al. (2017), treatment using Nivolumab demonstrated encouraging clinical outcomes among women with recurrent or metastatic cervical, vaginal and vulvar cancers. The study showed that progression-free survival rate (73.9%) was observed after three months, and overall survival (87.1%) was observed after six months. The overall response rate (ORR) across those three tumour types was 20.8% and the disease control rate (DCR) was 70.8%. For future prospect, combination of immune checkpoint inhibitors is ongoing in clinical trials which involve co-targeting CTLA-4 and PD-1, in combination or sequential, in advanced-stage of melanoma patients. This synergism may be resulting in the amplification of T cells in lymphoid organs and tumour tissue by CTLA-4, while inhibition of PD-1 overcomes the immune suppression in tumour tissues (Ribas, 2012). This combination treatment is now being investigated in ovarian and cervical cancers (Ribas, 2012).
Oncolytic Virotherapy

Oncolytic viruses selectively infect and kill cancerous cells/tissues without harming normal cells/tissues (Ferguson et al., 2012; Fukuhara et al., 2016; Russell et al., 2012). This character of oncolytic viruses has made them a potential modality in combating cancer which popularly known as oncolytic virotherapy nowadays. Oncolytic virotherapy is generally divided into two approaches using either naturally-occurring oncotropic viruses such as Newcastle disease virus, parvovirus, vesicular stomatitis virus and reovirus or using genetically modified viruses, which are engineered to attain selective oncolysis ability, such as adenovirus, herpes simplex virus and vaccinia virus (Motalleb, 2013).

Viruses have attracted interest as potential anti-cancer therapeutic agents since early 19th century when tumour regressions have been documented following virus infection or vaccination, mostly seen in immunosuppressed patients (Liu et al., 2007). This is the foundation for clinical trials where body fluids containing animal or human viruses were used to transmit infections to cancer patients (Russell et al., 2012). Among the earliest reports was the regression of cervical carcinoma after administration of rabies vaccine in 1912 (DePace, 1912). In 1956, a clinical trial using live adenoidal pharyngeal conjunctival against cervical cancer showed selective oncolytic effect of the virus limited to cancerous tissues (Smith et al., 1956). The practice was eventually abandoned due to uncontrolled toxicity (Fukuhara et al., 2016). However, with the invention of recombinant DNA technology, modification of viruses to improve their safety and anti-tumoural efficacy became possible (Kirn et al., 2001).

Advantages and disadvantages of oncolytic virotherapy

Oncolytic viruses destroy tumours by various mechanisms. A direct cell lysis can be achieved via the production of proteins that have direct cytotoxic effects on the tumour cells, through transgenes expression (Mullen and Tanabe, 2002). Elicitation of specific and non-specific immune response may enhance sensitivity of tumour cells to chemotherapy and radiotherapy (Goldufsky et al., 2013).

Oncolytic virotherapy is generally safe (Ferguson et al., 2012; Goldufsky et al., 2013; Liu et al., 2007) as it lacks cross resistance with other therapeutic agents (Kirn et al., 2001; Motalleb, 2013). Oncolytic viruses allow for the insertion and expression of transgenes in tumour cells to achieve specific effect (Goldufsky et al., 2013), while offering synergistic activity with other therapeutic approaches (Prestwich et al., 2008). It is also possible to monitor virus spread in tumours through transgene expression monitoring (Russell et al., 2012). Moreover, the amplification of input dose is possible as virus replicates and release new virions (Sze et al., 2013).

Nonetheless, oncolytic virotherapy does carry some drawbacks. The disadvantages include the presence of pre-existing immunity to the virus as a result of primary infection and/or previous immunization or oncolytic virotherapy, which limits the virus spread (Ferguson et al., 2012). In addition, virus neutralization by antibodies, inactivation by complements, non-specific uptake by other tissues such as the liver and spleen, and poor virus discharge from the vascular compartment following intravenous administration have been reported (reviewed by Wong et al., 2010).

Enhancing viral delivery

Various approaches to enhance viral delivery to tumour cells have been suggested. Viruses can be delivered intra-tumourally to avoid arrest by immune cells, although systemic delivery would be required for metastatic cancer therapy (Ferguson et al., 2012; Russell et al., 2012). The usage of non-human animal viruses to prevent their rapid eradication by pre-existing antibodies has also been suggested (Kelly and Russell, 2007).

Other suggestions are ultrasound delivery of viruses using microbubbles (Liang et al., 2010), utilization of carrier cells to hide and deliver viruses to tumour beds (Russell et al., 2012) and polymer coating of viruses which can enhance their intravenous delivery to tumours (Fisher and Seymour, 2010). Immune suppression could also be used to increase intratumoural virus spread but this approach could diminish cross-priming of anti-cancer immunity (Russell et al., 2012).
Despite the clinical achievement of oncolytic virotherapy, efficacy has not been observed in all patients and cancer types (Plitt and Zamarin, 2015). Future researches should focus on optimal choice of viruses, tumour types and stages of disease, viral dosage, routes of delivery, and recognizing possible combinations that may boost their pharmacological mechanisms of action (Goldufsky et al., 2013).

Oncolytic virotherapy against cervical cancer
Development of an increasingly effective oncolytic virotherapy has also increases the possibility of toxicity to normal cells. Therefore, current researches are trying to control the virus replication in normal cells upon delivery and expression to occur strictly at the targeted cancer cells. The ability to selectively stimulates replication at tumour cells only and diminish the replication if toxicity is evidenced could provide better safety and efficacy of oncolytic virotherapy.

In one study, Kanerva et al. (2008) uses adenoviruses containing the cyclooxygenase-2 (Cox-2) or vascular endothelial growth factor (VEGF) promoter to restrict viral replication to target tissues expressing the promoters, which are the tumour tissues. Expressions of Cox-2 and VEGF have been linked with tumour invasiveness and angiogenesis and undetected in the normal epithelial lining of the cervix (Cao and Prescott, 2002). Overexpression of Cox-2 and VEGF leads to chemotherapy resistance and poor survival rate of cervical cancer patients. Kanerva et al. (2008) also concluded that prior pre-treatment with anti-inflammatory reagent dexamethasone, on cervical cancer cells in vitro, able to reduce the replication of oncolytic adenovirus carrying Cox-2 and VEGF promoters in cancer cells. The usage of this steroid offers a safety switch for oncolytic virotherapy in case the tumour-specific promoters mediate any side effect in clinical trial.

Other than adenoviruses, a novel oncolytic Sindbis virus has been shown to successfully induce the cytopathic effects and apoptosis of two cervical cancer cells HeLaS3 and C33A. Its in vivo study demonstrated a site-specific and significant cervical tumour regression in nude mice upon intraperitoneal and intravenous virus inoculations (Unno et al., 2005).

It is suggested that combination of oncolytic virotherapy with other therapeutic agents may increase anti-cancer effects (Motalleb, 2013). Application of recombinant herpes simplex virus type I increases anti-tumour activity against cervical cancer when combined with radiation therapy (Blank et al., 2004). Valproic acid also improves oncolytic effect of rat parvovirus H-1PV synergistically against cervical cancer (Li et al., 2013). Combination of neoadjuvant chemotherapy with a recombinant human oncolytic adenovirus-p53 also offers better efficacy, safety and synergism in treating locally advanced cervical cancer patients of stage IB2 to IIIA (Xiao et al., 2017).

Gene Therapy
Gene therapy can be used to treat genetically inherited disease or cancer by transferring genetic materials into patients’ target cells to enhance or inhibit a specific protein expression (Podolska et al., 2012; Scholz and Wagner, 2012) without affecting the normal cells (Carrington, 2015). Gene therapy, also known as targeted therapy, may cause changes in the genetic materials of the patients (Kumar, 2016) and can be classified into two main groups, the germ line gene therapy and the somatic gene therapy (Ibraheem et al., 2014).

According to Ibraheem et al. (2014), germ line gene therapy involved alteration of the gene therapy in the germ cell of reproductive system, while somatic gene therapy occurs when genetic modification took place in the non-reproductive system cells. The germ line gene therapy is transmissible throughout several generations but the somatic gene therapy is restricted to only the patient who is treated with it (Ibraheem et al., 2014). Germ line gene therapy is transmissible due to the integration of the gene into the chromosome of the targeted genome location, whilst somatic gene therapy targeted the non-heritably genetic material, hence limits its transmission (Stribble et al., 2002).

In cancer treatment, gene therapy is used to target the abnormal gene, to increase the susceptibility of the cell towards drugs or conventional therapy, to induce cell apoptosis, to block oncogene expression
and to enhance tumour cell immunogenicity recognition (Das et al., 2014). Gene therapy can be applied to a patient by either a direct transfer or by using living cell-based approach (Figure 2).

![Figure 2: Representative of process flow for the two types of gene delivery approach for gene therapy; direct and living cell-based delivery (reproduced from NIH Stem Cell Information (2016)).](image)

In direct transfer, the gene of interest will be packed in liposomes or any other biological microparticles. These microparticles are then injected directly to the patients which resulted in gene or protein expression at the targeted organ. Gene therapy using living cells involves isolation and propagation of patient’s cells, introduction of therapeutic gene into the cell and re-introduction of the transformed cells to the patient (NIH Stem Cell Information, 2016).

For a successful delivery of the genetic modification component, “vehicles” are designed to create a secure and efficient genetic material carrier towards the target (Ibraheem et al., 2014). These carriers are important to carry genetic materials in a stable manner, and at the same time must cross the cell membrane and deliver the gene of interest to the targeted organ. There are many considerations for the development of a carrier, such as delivery method to the target, uptake mechanism by the targeted cell, arrival and recognition at the target (El-Aneed, 2004; Ibraheem et al., 2014; Narayan and Murty, 2010). There are now a wide variety of carriers that are used for gene therapy.

Types of carrier used in gene therapy
Traditionally, methods for gene therapy against cancer includes viral vectors, non-viral vectors (naked DNA), plasmids, bacteria vectors, liposomes, polymers, and molecular conjugates (Liu et al., 2014; Teo et al., 2016). More recently, carriers are developed based on proteins, such as the polyethylene glycol-polylactic acid (PEG-PLA) block copolymer (Liu et al., 2014).

Viral vectors are constructed by manipulating the viral genome through removing and/or replacing the virulence gene before adding with the gene of interest. Viral vectors are efficient as they can infect and replicate inside a host cell by releasing their genome into the host’s intracellular environment (Shen and
Post, 2007). Meanwhile, for non-viral vectors which consist of combination of naked DNA with nanoparticles or chemicals and delivered into cells via physical or chemical aid offers few advantages. These advantages include ease of preparation and scale up and ability to accommodate various size of therapeutic DNA. In addition, the non-viral vectors do not exert any type of immune responses in targeted cells thus can be inoculated into patient repeatedly (Schmidt-Wolf and Schmidt-Wolf, 2003). The development of non-viral vectors and protein carriers is intended to reduce the toxicity effects on host cells upon administration (He et al., 2010).

Gene therapy against cervical cancer

Recently, a group of researchers was able to inactivate two oncogenes of high-risk HPV-18, using Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 (CRISPR/Cas) technology. Kennedy et al., (2014) designed a single guide RNAs (sgRNAs) specific for E6 or E7 gene deletion and insertion mutations. The Cas9/sgRNA was delivered to the cells via transfection or lentiviral transduction. The resulting cleavage of HPV genome induces host cell tumour suppressor p53 and retinoblastoma (Rb) proteins to perform their functions, leading to cell cycle arrest, senescence, and apoptosis of the infected cells.

In another study, a high gene transfer efficiency was observed using an adeno-associated virus (AAV) vector encoding short hairpin RNA (shRNA) against the E6 and E7 of HPV-16 in three different cervical cancer cell lines (BOKU, SiHa and SKG-IIIa cells) (Sato et al., 2018). shRNA is known to constantly inhibiting target gene expression for longer periods of time. Sato et al. (2018) demonstrated that the AAV-shRNA was able to reduce the mean volume of 8-mm major axis cervical tumours in mice. Furthermore, the expression levels of E6 and E7 was decreased, whereas the expression levels of tumour suppressors p53, p21 and pRb proteins were increased upon treatment, compared to the control, without exhibiting any adverse effects to the host.

Conclusion

With the advancement of science and technologies, higher chances of cancer recovery are possible. Although some of the treatments are still in the phase of clinical trials, promising results are evidenced, thus, approval of such treatments are imminent. Exploring the causes of the diseases and ways to modify our genome or tweaks our immunity enable researchers to develop more targeted treatments to cure all types of cancer, hence minimise cancer-related deaths in future.

Acknowledgments

This study was supported by the Ministry of Education Malaysia, under the Fundamental Research Grant Scheme (FRGS), with project number 02-01-15-1735FR. We would like to thank Dr. Noor Baity Saidi of Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, who initially proposed the concept of this paper. NALMZ and MNR were funded by Graduate Research Fellowship of the Universiti Putra Malaysia.

References

