Effects of Herbicides on Fungal Phytopathogens

Durgadevi Mohan, Pei Yin Ho, Chai Ling Ho, Parameswari Namasivayam, Noor Baity Saidi


Herbicides are inevitable inputs to control excessive weed in crop land, particularly where modern agricultural practices such as conservation tillage, are opted. Intensive farming has increased the market value of herbicides among the other pesticides. Although herbicides are effective in controlling weed population, administration of this synthetic chemicals may alter the soil microbial community causing potential increase of plant pathogens. Moreover, herbicides may also have nontarget effects on the cultivated crops making them more susceptible to diseases. Actions of herbicides in soil that either stimulate microbial growth or wipe out some microbial population may create space for the thrivial of opportunistic fungi. Previous studies showed that white rot fungi are more tolerant to herbicides as they produce lignin degrading enzymes that are highly oxidative, non-specific and are able to transform a wide range of herbicides. Besides that, this group of fungi can grow on agricultural waste substrates. Influence of these herbicides on soil microbial ecosystem and interactions of plants and pathogenic white rot fungi modulate disease development in plant hosts.


Herbicide, lignin degrading enzymes, soil microorganisms, white rot fungi

Full Text:



Agrios, G., N, (2005). Plant pathology. Fifth Edition Elsevier Academic Press, London, United Kingdom.

Ahn, I. P. (2008). Glufosinate ammonium-induced pathogen inhibition and defense responses culminate in disease protection in bar-transgenic rice. Plant Physiology, 146, 213-227.

Altman, J., & Campbell, C. L. (1977). Effect of herbicides on plant diseases. Annual Review of Phytopathology, 15, 361-385.

Asgher, M., Bhatti, H. N., Ashraf, M., & Legge, R. L. (2008). Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation, 19, 771-783.

Araújo, A. D., Monteiro, R. T. R., & Abarkeli, R. B. (2003). Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere, 52, 799-804.

Avidano, L., Gamalero, E., Cossa, G. P., & Carraro, E. (2005). Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Applied Soil Ecology, 30, 21-33.

Ayansina, A. D. V., & Oso, B. A. (2006). Effect of two commonly used herbicides on soil microflora at two different concentrations. African Journal of Biotechnology, 5, 129-132.

Bending, G. D., Friloux, M., & Walker, A. (2002). Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiology Letters, 212, 59-63.

Black, B. D., Russin, J. S., Griffin, J. L., & Snow, J. P. (1996). Herbicide effects on Rhizoctonia solani in vitro and Rhizoctonia foliar blight of soybean (Glycine max). Weed science, 711-716.

Borggaard, O. K., & Gimsing, A. L. (2008). Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Management Science, 64, 441-456.

Cerdeira, A. L., & Duke, S. O. (2006). The current status and environmental impacts of glyphosate resistant crops. Journal of Environmental Quality, 35, 1633-1658.

Cobb, A. H., & Kirkwood, R. C. (Eds.). (2000). Herbicides and Their Mechanisms of Action (Vol.

. Sheffield Academic Press. England.

Coelho,D., J., de Souza, C. G. M., de Oliveira, A. L., Bracht, A., Costa, M. A. F., & Peralta, R. M. (2010). Comparative removal of Bentazon by Ganoderma lucidum in liquid and solid state cultures. Current Microbiology, 60, 350-355.

Conway G.R., & Pretty J. (1991). Unwelcome Harvest: Agriculture and Pollution. Earthscan. London, United Kingdom.

Crawford, N. M. (1995). Nitrate: nutrient and signal for plant growth. The Plant Cell, 7, 859.

Cremlyn, R. J. (1990). Agrochemicals. Preparation and Mode of Action. John Wiley and Sons Ltd.


Datnoff, L.E., Elmer, W.H., Huber, D.M. (2007). Mineral Nutrition and Plant Disease. APS Press, St.

Paul, Minnesota.

Devine, M., Duke, S. O., & Fedtke, C. (1992). Physiology of Herbicide Action. PTR Prentice Hall, Englewood, New Jersey.

Dill, G.M. (2005). Glyphosate‐resistant crops: history, status and future.Pest Management Science, 61,219-224.

Dill, G. M., Sammons, R. D., Feng, P. C., Kohn, F., Kretzmer, K., Mehrsheikh, A. & Haupfear, E. A. (2010). Glyphosate: discovery, development, applications, and properties, In Glyphosate Resistance in Crops and Weeds: History, Development, and Management (1-33). John Wiley and Sons, Inc. Hoboken.

Duke, S. O., & Powles, S. B. (2008). Glyphosate: a once‐in‐a‐century herbicide. Pest Management Science, 64, 319-325.

FAO. 2013. Fao Statistical Yearbook 2013: World Food and Agriculture. Food and Agriculture Organization of the United Nations, Rome, Italy.

FAO 2015. Fao Statistical Pocketbook 2015: World Food and Agriculture. Food and Agriculture Organization of the United Nations, Rome, Italy.

Funderburk Jr, H. H., & Lawrence, J. M. (1964). Mode of action and metabolism of diquat and paraquat. Weeds, 259-264.

Gimeno, C. J., Ljungdahl, P. O., Styles, C. A., & Fink, G. R. (1992). Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell, 68, 1077-1090.

Gomes, M. P., Smedbol, E., Chalifour, A., Hénault-Ethier, L., Labrecque, M., Lepage, L., Lucotte, M. & Juneau, P. (2014). Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview.Journal of experimental botany, 4691-4703.

Hammel, K. E., Kapich, A. N., Jensen, K. A., & Ryan, Z. C. (2002). Reactive oxygen species as agents of wood decay by fungi. Enzyme and microbial technology, 30, 445-453.

Hassall, K. A. (1982). The Chemistry of Pesticides: Their Metabolism, Mode of Action and Uses in Crop Protection. Macmillan. Basingstoke and London.

Hiratsuka, N., Wariishi, H., & Tanaka, H. (2001). Degradation of diphenyl ether herbicides by the lignin-degrading basidiomycete Coriolus versicolor. Applied Microbiology and Biotechnology, 57, 563-571.

Hofrichter, M. (2002). Review: lignin conversion by manganese peroxidase (MnP). Enzyme and Microbial Technology, 30, 454-466.

Jauregui, J., Valderrama, B., Albores, A., & Vazquez-Duhalt, R. (2003). Microsomal transformation of organophosphorus pesticides by white rot fungi. Biodegradation, 14, 397-406.

Johal, G. S., & Huber, D. M. (2009). Glyphosate effects on diseases of plants. European Journal of Agronomy, 31, 144-152.

Kersten, P., & Cullen, D. (2007). Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genetics and Biology, 44, 77-87.

Kishore , G. M. and D. M. Shah . (1988). Amino acid biosynthesis inhibitors as herbicides. Annual Review of Biochemistry, 57, 627 – 663.

Koroleva, O. V., Zherdev, A. V., & Kulikova, N. A. (2015). The Role of White-rot Fungi in Herbicide Transformation, In Andrew Price (Ed.), Herbicides, Physiology of Action, and Safety. InTech Publishers. Croatia.

Lancaster, S. H., Hollister, E. B., Senseman, S. A., & Gentry, T. J. (2010). Effects of repeated glyphosate applications on soil microbial community composition and the mineralization of glyphosate. Pest Management Science, 66, 59-64.

Lam, H.M., Coschigano, K., Schultz, C., Melo-Oliveira, R., Tjaden, G., Oliveira, I., Ngai, N., Hsieh, M.H. & Coruzzi, G. (1995). Use of Arabidopsis mutants and genes to study amide amino acid biosynthesis. The Plant Cell, 7, 887.

MacDonald, G. E., Gettys, L. A., Ferrell, J. A., & Sellers, B. A. (2013). Herbicides for Natural Area Weed Management. In A.J. Price, J.A. Kelton (Eds.), Herbicides- Current Research and Case Studies in Use (203–239). InTech Publishers. Croatia.

Maciel, G. M., Bracht, A., Souza, C. G. M., Costa, A. M., & Peralta, R. M. (2012). Fundamentals, diversity and application of white-rot fungi. Fungi: Types, Environmental Impact and Role in Disease (409-457). Nova Science Publishers, Inc., New York.

Matsuzaki, F., & Wariishi, H. (2004). Functional diversity of cytochrome P450s of the white-rot fungus Phanerochaete chrysosporium. Biochemical and Biophysical Research Communications, 324, 387-393.

Moreira, D. S., J., Maciel, G. M., Castoldi, R., da Silva Mariano, S., Inácio, F. D., Bracht, A., & Peralta, R. M. (2013). Involvement of lignin-modifying enzymes in the degradation of herbicides, In A.J. Price, J.A. Kelton (Eds.), Agricultural and Biological Sciences Herbicides-Advances in Research (165–187). InTech Publishers. Croatia.

Nandula, V. K. (Ed.). (2010). Glyphosate Resistance in Crops and Weeds: History, Development, and Management. John Wiley & Sons.

Oerke, E. C. (2006). Crop losses to pests. The Journal of Agricultural Science, 144, 31-43.

Pointing, S. (2001). Feasibility of bioremediation by white-rot fungi. Applied Microbiology and Biotechnology, 57, 20-33.

Pizzul, L., del Pilar Castillo, M., & Stenström, J. (2009). Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegradation, 20, 751-759.

Pretty, J., & Bharucha, Z. P. (2015). Integrated pest management for sustainable intensification of agriculture in Asia and Africa. Insects, 6, 152-182.

Rahe, J.E., Levesque, C.A., Johal, G.S. (1990). Synergistic role of soil fungi in the herbicidal efficacy of glyphosate, In Hoagland, R.E. (Ed.), Biological Weed Control Using Microbes and Microbial Products as Herbicides (260–275). Symposium, April 9–14, 1989. American Chemical Society,Washington, DC.

Ratcliff, A. W., Busse, M. D., & Shestak, C. J. (2006). Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Applied Soil Ecology, 34, 114-124.

Rose, M.T., Cavagnaro, T.R., Scanlan, C.A., Rose, T.J., Vancov, T., Kimber, S., Kennedy, I.R., Kookana, R.S. and Van Zwieten, L. (2016). Impact of Herbicides on Soil Biology and Function. Advances in Agronomy, 136, 133-220.

Senseman, S. (2007). Herbicide Handbook. Weed Science Society of America, Lawrence, Kentucky State. 458.

Santín-Montanyá, I., Zambrana-Quesada, E., & Tenorio-Pasamón, J. L. (2013). Weed Management in Cereals in Semi-Arid Environments: A Review: Herbicides–Current research and Case Studies In Use. Publisher: InTech, 133-152.

Shariq I. Sherwani, Ibrahim A. Arif and Haseeb A. Khan. (2015). Modes of Action of Different Classes of Herbicides, In Andrew Price (Ed.), Herbicides, Physiology of Action, and Safety. InTech Publishers. Croatia.

Shelpi, B. J., Swanton, C. J., Mersey, B. G., & Hall, J. C. (1992). Glufosinate (phosphinothricin) inhibition of N metabolism in barley and green foxtail plants. Journal of Plant Physiology, 139, 605-610.

Smith, S. N., & Lyon, A. J. E. (1976). The uptake of paraquat by soil fungi. New Phytologist. 76, 479-484.

Singh, D. K. (2012). Pesticide Chemistry and Toxicology. Bentham Science Publishers. Sharjah, United Arab Emirates.

Six, J., Elliott, E. T., & Paustian, K. (1999). Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Science Society of America Journal, 63, 1350-1358.

Snoeijers, S. S., Pérez-García, A., Joosten, M. H., & De Wit, P. J. (2000). The effect of nitrogen on disease development and gene expression in bacterial and fungal plant pathogens. European Journal of Plant Pathology, 106, 493-506.

Tan, S., Evans, R., & Singh, B. (2006). Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino acids, 30, 195-204.

Thompson, I.A., Huber, D.M., Schulze, D.G. (2000). In situ oxidation and accumulation of manganese by the causal agent of the take-all disease on wheat (Gaeumannomyces graminis). Phytopathology, 90, S77.

Vaughn, K. C., & Duke, S. O. (1983). In situ localization of the sites of paraquat action. Plant, Cell and Environment, 6, 13-20.

Wagner G, Nadasy E. (2006). Effect of pre-emergence herbicides on growth parameters of green pea.Communications in Agricultural and Applied Biological Science, 71, 809–813.

Wild, A., Sauer, H., & Rühle, W. (1987). The effect of phosphinothricin (glufosinate) on photosynthesis I. Inhibition of photosynthesis and accumulation of ammonia. Zeitschrift für Naturforschung, 42, 263-269.

Woodburn, A.T. (2000). Glyphosate: production, pricing and use worldwide. Pest Management Science, 56, 309–312.

Zabaloy, M. C., Garland, J. L., & Gómez, M. A. (2008). An integrated approach to evaluate the impacts of the herbicides glyphosate, 2, 4-D and metsulfuron-methyl on soil microbial communities in the Pampas region, Argentina. Applied Soil Ecology, 40, 1-12.

Zain, N.M.M., Mohamad, R. B., Sijam, K., Morshed, M. M., & Awang, Y. (2013). Effect of selected herbicides in vitro and in soil on growth and development of soil fungi from oil palm plantation. International Journal of Agriculture and Biology, 15, 820-826.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

The Pertanika Journal of Scholarly Research Reviews, (e-ISSN: 2462-2028, ISSN: 2636-9141) published by Universiti Putra Malaysia Press