Phenol Toxicity and Remediation

Siew Yi Lee, Janna Ong Abdullah

Abstract


Widespread applications of phenol in manufacturing industries and oil refinerieshaveresulted in unprecedented leakageof phenol into the environment. Its toxicity, remediation methods and degradation pathways were outlined in this review. Upon contact or ingestion, phenolcausesserious health effects such as tissuenecrosis and cardiac arrhythmia. Plantsexposed to phenolhavereducedseed germination index, inhibitedgrowthoreven fatality. There are many technologies currently practised to remediate phenol pollutionsuch asphysicochemical methods(adsorption to activated carbon and chemical oxidation), biological methods (biodegradation by bacteriaor fungus,andsoil bioaugmentation),and phytoremediation method (using hairy rootsof plants). As physicochemicaland microbial phenol degradation are destructive and costly, phytoremediation is widely studied as an alternative phenol remediator which is environmental friendly and cost-effective.Microorganisms can detoxify the aromatic xenobiotic through the aerobic or anaerobic pathway. Aerobic degradation of phenol is througheitherthe meta-or ortho-pathway of catechol cleavage while anaerobic degradation occurs through the benzoate pathway. In plants, degradation of phenol is also through catechol cleavage as in microorganisms. However, different enzyme systems areutilisedin the differentpathways involved.


Keywords


Biodegradation, Pathways, Phenol, Physiochemical remediation and Phytoremediation.

Full Text:

PDF

References


Abdelkreem, M. (2013). Adsorption of phenol from industrial wastewater using olive mill waste. APCBEE Procedia, 5, 349-357.

Afzal, M., Khan, Q. M., & Sessitsch, A. (2014). Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere, 117, 232-242.

Alderete, L. G. S., Talano, M. A., Ibanez, S. G., Purro, S., Agostini, E., Milrad, S. R., & Medina, M. I. (2009). Establishment of transgenic tobacco hairy roots expressing basic peroxidases and its application for phenol removal. Journal of Biotechnology, 139, 273-279.

Alemzadeh, I., & Nejati, S. (2009). Phenols removal by immobilized horseradish peroxidase. Journal of Hazardous Materials, 166, 1082-1086.

Alifragkis, D., Vavelidis, M., Orfanoudakis, M., Gazea, E., Galatsianou, A., Voulgaridou, H., ... & Alifragki, M. (2013). Installation of natural vegetation on old tailing disposal area at Olympias Halkidiki mine after chemical stabilisation and phytoremediation. In 6th International Conference on Sustainable Development in the Minerals Industry (pp. 435-445).

Al-Muhtaseb, A. H., Ibrahim, K. A., Albadarin, A. B., Ali-khashman, O., Walker, G. M., & Ahmad, M. N. M. (2011). Remediation of phenol-contaminated water by adsorption using poly(methyl methacrylate) (PMMA). Chemical Engineering Journal, 168, 691-699.

An, H. R., Park, H. J., & Kim, E. S. (2001). Cloning and expression of thermophilic catechol-1,2-dioxygenase gene (catA) from Streptomyces setonii. FEMS Microbiology Letters, 195, 17-22.

Arnao, M. B., Acosta, M., Del-Rio, J. L., Varon, R., & Garcia-Canovas, F. (1990). A kinetic study on the suicide inactivation of peroxidase by hydrogen peroxide. Biochimica et Biophysica Acta, 1041, 43-47.

Ashraf, M. (2009). Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances, 27, 84-93.

Baker, E. L., Landrigan, P. J., Bertozzi, P. E., Field, P. H., Basteyns, B. J., & Skinner, H. G. (1978). Phenol poisoning due to contaminated drinking water. Archives of Environmental Health: An International Journal, 33, 89-94.

Balachandran, V., Murugan, M., Karpagam, V., Karnan, M., & Ilango, G. (2014). Conformational stability, spectroscopic (FT-IR & FT-Raman), HOMO-LUMO, NBO and thermodynamic function of 4-(trifloromethoxy) phenol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 130, 367-375.

Banerjee, A., & Ghoshal, A. K. (2010). Phenol degradation by Bacillus cereus: pathway and kinetic modelling. Bioresource Technology, 101, 5501-5507.

Basha, K. M., Rajendran, A., & Thangavelu, V., (2010). Recent advances in the biodegradation of phenol: a review. Asian Journal of Experimental Biological Sciences, 1, 219-234.

Bhargava, A., Carmona, F. F., Bhargava, M., & Srivastava, S. (2012). Approaches for enhanced phytoextraction of heavy metals. Journal of Environmental Management, 105, 103-120.

Bhatnagar, A., & Sillanpaa, M. (2010). Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment - a review. Chemical Engineering Journal, 157, 277-296.

Bolan, N. S., Park, J. H., Robinson, B., Naidu, R., & Huh, K. Y. (2011). Phytostabilization: a green approach to contaminant containment. Advances in Agronomy, 112, 145-204.

Caetano, M., Valderrama, C., Farran, A., & Cortina, J. L. (2009). Phenol removal from aqueous solution by adsorption and ion exchange mechanisms onto polymeric resins. Journal of Colloid and Interface Science, 338, 402-409.

Caza, N., Bewtra, J. K., Biswas, N., & Talor, K. E. (1999). Removal of phenolic compounds from synthetic wastewater using soybean peroxidase. Water Research, 13, 3012-3018.

Chatterjee, S., Das, S. K., Chakravarty, R., Chakrabarti, A., & Ghosh, S. (2010). Interaction of malathion, an organophosphorus pesticide with Rhizopus oryzae biomass. Journal of Hazardous Materials, 174, 47-53.

Coniglio, M. S., Busto, V. D., Gonzalez, P. S., Medina, M. I., Milrad, S., & Agostini, E. (2008).

Application of Brassica napus hairy root cultures for phenol removal from aqueous solutions.

Chemosphere, 72, 1035-1042.

Davies, J. S., & Westlake, D. W. S. (1979). Crude oil utilization by fungi. Canadian Journal of Microbiology, 25, 146-156.

Deichmann, W. B., & Keplinger, M. L. (1981). Phenols and phenolic compounds. Patty's Industrial Hygiene and Toxicology, 2, 2567-2627.

Deva, A. N., Arun, C., Arthanareeswaran, G., & Sivashanmugam, P. (2014). Extraction of peroxidase from waste Brassica oleracea used for the treatment of aqueous phenol in synthetic waste water. Journal of Environmental Chemical Engineering, 2, 1148-1154.

Durmishidze, S., Djikiya, A., & Lomidze, E. (1979). Uptake and transformation of benzidine by plants in sterile conditions. Dokladi Akademii Nauk SSSR, 247, 244-247.

Eapen, S., & D’Souza, S. F. (2005). Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnology Advances, 23, 97-114.

El-Naas, M. H., Al-Muhtaseb, S. A., & Makhlouf, S. (2009). Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. Journal of Hazardous Materials, 164, 720-725.

El-Naas, M. H., Al-Zuhair, S., & Alhaija, M. A. (2010a). Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon. Chemical Engineering Journal, 162, 997-1005.

El-Naas, M. H., Al-Zuhair, S., & Makhlouf, S. (2010b). Continuous biodegradation of phenol in a spouted bed bioreactor (SBBR). Chemical Engineering Journal, 160, 565-570.

Fenton, A. M., Stephens, P. M., Crowley, J., O'callaghan, M., & O'gara, F. (1992). Exploitation of gene (s) involved in 2,4-diacetylphloroglucinol biosynthesis to confer a new biocontrol capability to a Pseudomonas strain. Applied and Environmental Microbiology, 58, 3873-3878.

Franzetti, A., Caredda, P., Ruggeri, C., La Colla, P., Tamburini, E., Papacchini, M., & Bestetti, G. (2009). Potential applications of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies. Chemosphere, 75, 801-807.

Flocco, C. G., LoBalbo, A., Carranza, M. P., & Giulietti, A. M. (2002). Removal of phenol by alfalfa plants (Medicago sativa L.) grown in hydroponics and its effect on some physiological parameters. Acta Biotechnologica, 22, 43–54.

Gerhardt, K. E., Huang, X. D., Glick, B. R., & Greenberg, B. M. (2009). Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Science, 176, 20-30.

Golbaz, S., Jafari, A. J., Rafiee, M., & Kalantary, R. R. (2014). Separate and simultaneous removal of phenol, chromium, and cyanide from aqueous solution by coagulation/ precipitation: mechanisms and theory. Chemical Engineering Journal, 253, 251-257.

Gonzalez, P. S., Ontanon, O. M., Armendariz, A. L., Talano, M. A., Paisio, C. E., & Agostini, E.

(2013). Brassica napus hairy roots and rhizobacteria for phenolic compounds removal.

Environmental Science and Pollution Research, 20, 1310-1317.

Gosselin, R. E., Smith, R. P., & Hodge, H. C., (1984). Clinical Toxicology of Commercial Products (5th ed.). Baltimore: Williams and Wilkins.

Gottschall, N., Boutin, C., Crolla, A., Kinsley, C., & Champagne, P. (2007). The role of plants in the removal of nutrients at a constructed wetland treating agricultural (dairy) wastewater, Ontario, Canada. Ecological Engineering, 29, 154-163.

Hamid, M., & Khalill-ur-Rehman. (2009). Potential applications of peroxidases. Food Chemistry, 115, 1177-1186.

Ho, S., Andrew, Y., Daugulisb, J., & Lee, S. H. (2010). Bioremediation of phenol-contaminated water and soil using magnetic polymer beads. Process Biochemistry, 45, 1582-1586.

Huang, Z. Z., Wang, P., Li, H., Lin, K. F., Lu, Z. Y., Guo, X. J., & Liu, Y. D. (2014). Community analysis and metabolic pathway of halophilic bacteria for phenol degradation in saline environment. International Biodeterioration and Biodegradation, 94, 115-120.

Husain, Q. (2010). Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: a review. Reviews in Environmental Science and Bio/Technology, 9, 117-140.

Ibanez, S. G., Alderete, L. G. S., Medina, M. I., & Agostini, E. (2012). Phytoremediation of phenol using Vicia sativa L. plants and its antioxidative response. Environmental Science and Pollution Research, 19, 1555-1562.

Ibanez, S., Talano, M., Ontanon, O., Suman, J., Medina, M. I., Macek, T., & Agostini, E. (2016). Transgenic plants and hairy roots: exploiting the potential of plant species to remediate contaminants. New Biotechnology, 33, 625-635.

Iran, A., & Siamak, N. (2009). Removal of phenols with encapsulated horseradish peroxidase in calcium alginate. Iranian Journal of Chemistry and Chemical Engeneering, 28, 43-49.

Jha, P., Jobby, R., Kudale, S., Modi, N., Dhaneshwar, A., & Desai, N. (2013). Biodegradation of phenol using hairy roots of Helianthus annuus L. International Biodeterioration and Biodegradation, 77, 106-113.

Kamilova, F., Lamers, G., & Lugtenberg, B. (2008). Biocontrol strain Pseudomonas fluorescens WCS365 inhibits germination of Fusarium oxysporum spores in tomato root exudate as well as subsequent formation of new spores. Environmental Microbiology, 10, 2455-2461.

Kilic, N. K. (2009). Enhancement of phenol biodegradation of Ochrobactrum sp. isolated from industrial wastewaters. International Biodeterioration and Biodegradation, 63, 778-781.

Kurzbaum, E., Kirzhner, F., Sela, S., Zimmels, Y., & Armon, R. (2010). Efficiency of phenol biodegradation by planktonic Pseudomonas pseudoalcaligenes (a constructed wetland isolate) vs. root and gravel biofilm. Water Resource, 17, 5021-5031.

Kwon, K. H., & Yeom, S. H. (2009). Optimal microbial adaptation routes for the rapid degradation of high concentration of phenol. Bioprocess and Biosystems Engineering, 32, 435-442.

Larous, S., & Meniai, A. H. (2012). The use of sawdust as by product adsorbent of organic pollutant from wastewater: adsorption of phenol. Energy Procedia, 18, 905-914.

Lee, S. Y., Kim, B. N., Han, J. H., Chang, S. T., Choi, Y. W., Kim, Y. H., & Min, J. (2010). Treatment of phenol-contaminated soil by Corynebacterium glutamicum and toxicity removal evaluation. Journal of Hazardous Materials, 182, 937-940.

Li, Y., Li, J., Wang, C., & Wang, P. (2010). Growth kinetics and phenol biodegradation of psychrotrophic Pseudomonas putida LY1. Bioresource Technology, 101, 6740-6744.

Lika, K., & Papadakis, I. A. (2009). Modeling the biodegradation of phenolic compounds by microalgae. Journal of Sea Research, 62, 15-146.

Liu, Q. S., Zheng, T., Wang, P., Jiang, J. P., & Li, N. (2010). Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chemical Engineering Journal, 157, 348-356.

Lu, Y., Yan, L., Wang, Y., Zhou, S. F., Fu, J. J., & Zhang, J. F. (2009). Biodegradation of phenolic compounds from coking waste water by immobilized white rot fungus Phanerochaete chrysosporium. Journal of Hazardous Materials, 165, 1091-1097.

Lu, W., Zhang, W., Bai, Y., Fu, Y., Chen, J., Geng, X., Wang, M., & Xiao, M. (2010). A genetically engineered Pseudomonas fluorescens strain possesses dual activity against phytopathogenic fungi and insects. Journal of Microbiology and Biotechnology, 20, 281-286.

Luo, H., Li, X., Fang, T., Liu, P., Zhang C., Xie, H., & Sun, E. (2015). The toxicity of binary mixture of Cu (II) ion and phenols on Tetrahymena thermophile. Ecotoxicology and Environmental Safety, 113, 412-417.

Mackova, M., Chroma, L., Kucerova, P., Burkhard, J., Demnerova, K., & Macek, T. (2001). Some aspects of PCB metabolism by horseradish cells. International Journal of Phytoremediation, 3, 401-414.

Massa, V., Infantino, A., Radice, F., Orlandi, V., Tavecchio, F., Giudici, R., ... & Barbieri, P. (2009). Efficiency of natural and engineered bacterial strains in the degradation of 4-chlorobenzoic acid in soil slurry. International Biodeterioration & Biodegradation, 63, 112-115.

McCall, I. C., Betanzos, A., Weber, D. A., Nava, P., Miller, G. W. & Parkos, C. A. (2009). Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization. Toxicology and Applied Pharmacology, 241, 61-70.

Mithaishvilia, T., Scalla, R., Ugrekhelidzea, D., Tseretelia, B., Sadunishvilia, T., & Kvesitadzea, G. (2005). Degradation of aromatic compounds in plants grown under aseptic conditions. Zeitschrift für Naturforschung, 60, 97-102.

Mrozik, A., & Piotrowska-Seget, Z. (2010). Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiological Research, 165, 363-375.

Nair, C. I., Jayachandran, K., & Shashidhar, S. (2008). Biodegradation of phenol. African Journal of Biotechnology, 7, 4951-4958.

Nepovim, A., Podlipna, R., Soudek, P., Schroder, P., & Vanek, T. (2004). Effects of heavy metals and nitroaromatic compounds on horseradish glutathione S-transferase and peroxidase. Chemosphere, 57, 1007-1015.

Niu, G. L., Zhang, J. J., Zhao, S., Liu, H., Boon, N., & Zhou, N. Y. (2009). Bioaugmentation of a 4 - chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73. Environmental Pollution, 157, 763-71.

Ontanon, O. M., Gonzalez, P. S., Ambrosio, L. F., Paisio, C. E., & Agostini, E. (2014). Rhizoremediation of phenol and chromium by the synergistic combination of a native bacterial strain and Brassica napus hairy roots. International Biodeterioration and Biodegradation, 88, 192-198.

Paisio, C., Agostini, E., Gonzalez, P., & Bertuzzi, M. (2009). Lethal and teratogenic effects of phenol on Bufo arenarum embryos. Journal of Hazardous Materials, 167, 64-68.

Paisio, C. E., Gonzalez, P. S., Gerbaudo, A., Bertuzzi, M. L., & Agostini, E. (2010). Toxicity of phenol solutions treated with rapeseed and tomato hairy roots. Desalination, 263, 23-28.

Paisio, C. E., Talano, M. A., Gonzalez, P. S., Pajuelo-Dominguez, E., & Agostini, E. (2013). Characterization of a phenol-degrading bacterium isolated from an industrial effluent and its potential application for bioremediation. Environmental Technology, 34, 485-493.

Park, S. Y., Kim, K. S., Kim, J. T., Kang, D. S., & Sung, K. J. (2011). Effects of humic acid on phytodegradation of petroleum hydrocarbons in soil simultaneously contaminated with heavy metals. Journal of Environment Sciences, 23, 2034-2041.

Pedersen, G., Brynskov, J., & Saermark, T. (2002). Phenol toxicity and conjugation in human colonic epithelial cells. Scandinavian Journal of Gastroenterology, 37, 74-79.

Pletsch, M., Araujo, B. S., & Charlwood, B. V. (1999). Novel biotechnological approaches in environmental remediation research. Biotechnology Advances, 17, 679-687.

Rodrigues, L. A., da Silva, M. L. C. P., Alvarez-Mendes, M. O., dos Reis Coutinho, A., & Thim, G. P. (2011). Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds. Chemical Engineering Journal, 174, 49-57.

Rusdi, B., Mulyanti, D., & Rodiyah, M. (2014). Characterization of peroxidase enzyme from water spinach (Ipomoea aquatica Forssk.) fraction. Procedia Chemistry, 13, 170-176.

Saboora, A., & Hejri, S. (2009). Removal of phenolic compounds from synthetic wastewater by enzymatic treatments. Journal of Unmanned System Technology, 35, 13–19.

Seckin, B., Turkan, I., Sekmen, A. H., & Ozfidan, C. (2010). The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare

L. (cultivated barley). Environmental and Experimental Botany, 69, 76-85.

Shi, J., Feng, M., Zhang, X., Wei, Z., & Wang, Z. (2013). Acute oral toxicity and liver oxidant/antioxidant stress of halogenated benzene, phenol, and diphenyl ether in mice: a comparative and mechanism exploration. Environmental Science and Pollution Research, 20, 6138-6149.

Shourian, M., Noghabi, K. A., Zahiri, H. S., Bagheri, T., Karballaei, G., Mollaei, M., ... & Abbasi, H. (2009). Efficient phenol degradation by a newly characterized Pseudomonas sp. SA01 isolated from pharmaceutical wastewater. Desalination, 246, 577-594.

Sihem, A., Lehocine, M. B., & Miniai, H. A. (2012). Batch adsorption of phenol from industrial waste using cereal by-products as a new adsorbent. Energy Procedia, 18, 1135-1144.

Singh, S., Melo, J. S., Eapen, S., & D‘Souza, S. F. (2006). Phenol removal using Brassica juncea hairy roots: role of inherent peroxidase and H2O2. Journal of Biotechnology, 123, 43-49.

Song, H., Liu, Y., Xu, W., Zeng, G., Aibibu, N., Xu, L., & Chen, B. (2009). Simultaneous Cr (VI) reduction and phenol degradation in pure cultures of Pseudomonas aeruginosa CC7CCAB91095. Bioresource Technology, 100, 5079-5084.

Suchkova, N., Tsiripidis, I., Alifragkis, D., Ganoulis, J., Darakas, E., & Sawidis, T. (2014). Assessment of phytoremediation potential of native plants during the reclamation of an area affected by sewage sludge. Ecological Engineering, 69, 160-169.

Suenaga, H., Koyama, Y., Miyakoshi, M., Miyazaki, R., Yano, H., Sota, M., Ohtsubo, Y., Tsuda, M., & Miyazaki, K. (2009). Novel organization of aromatic degradation pathway genes in a microbial community as revealed by metagenomic analysis. The ISME Journal, 3, 1335-1348.

Suresh, B., Sherkhane, P. D., Kale, S., Eapen, S., & Ravishankar, G. A. (2005). Uptake and degradation of DDT by hairy root cultures of Cichorium intybus and Brassica juncea. Chemosphere, 61, 1288-1292.

Talano, M. A., Frontera, S., Gonzalez, P., Medina, M. I., & Agostini, E. (2010). Removal of 2, 4-diclorophenol from aqueous solutions using tobacco hairy root cultures. Journal of hazardous materials, 176, 784-791.

Testiati, E., Parinet, J., Massiani, C., Laffont-Schwob, I., Rabier, J., Pfeifer, H. R., Lenoble, V., Masotti, V., & Prudent, P. (2013). Trace metal and metalloid contamination levels in soils and in two native plant species of a former industrial site: evaluation of phytostabilization potential. Journal of Hazardous Materials, 248, 131-141.

Tootian, Z., Monfared, A. L., Fazelipour, S., Shybani, M. T., Rouhollah, F., Sasani, F., & Molaemi, E. (2012). Biochemical and structural changes of the kidney in mice exposed to phenol. Turkish Journal of Medical Sciences, 42, 695-703.

Ucisik, A. S., & Trapp, S. (2006). Uptake, removal, accumulation, and phytotoxicity of phenol in willow trees (Salix viminalis). Environmental Toxicology and Chemistry, 25, 2455-2460.

Vamerali, T., Bandiera, M., & Mosca, G. (2010). Field crops for phytoremediation of metal-contaminated land: a review. Environmental Chemistry Letters, 8, 1-17.

Vasudevan, S. (2014). An efficient removal of phenol from water by peroxi-electrocoagulation processes. Journal of Water Process Engineering, 2, 53-57.

Wang, Y., Song, J., Zhao, W., He, X., Chen, J., & Xiao, M. (2011). In situ degradation of phenol and promotion of plant growth in contaminated environments by a single Pseudomonas aeruginosa strain. Journal of Hazardous Materials, 192, 354-360.

Williams, R. J., & Evans, W. C. (1975). The metabolism of benzoate by Moraxella species through anaerobic nitrate respiration: evidence for a reductive pathway. Biochemical Journal, 148, 1-10.

Yamaga, F., Washio, K., & Morikawa, M. (2010). Sustainable biodegradation of phenol by Acinetobacter calcoaceticus P23 isolated from the rhizosphere of duckweed Lemna aoukikusa. Environmental Science and Technology, 44, 6470-6474.

Zhang, X., Zhao, F. J., Huang, Q., Williams, P. N., Sun, G. X., & Zhu, Y. G. (2009). Arsenic uptake and speciation in the rootless duckweed Wolffia globosa. New Phytologist, 183, 421-428.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

The Pertanika Journal of Scholarly Research Reviews, (e-ISSN: 2462-2028, ISSN: 2636-9141) published by Universiti Putra Malaysia Press