Prospective Therapeutic Strategies for Cervical Cancer

Nor Aini Lubis Mhd Zain, Khadija Isa Sheshe, Mohd Nasharudin Razak, Noorzaileen Eileena Zaidi, Abdul Razak Mariatulqabtiah

Abstract


Cervical cancer is one of the leading causal cancer-related fatalities in the world. Since cervical cancer is asymptomatic during early stage, early detection is vital to prevent poor prognosis of cancer patients. Upon detection, treatments for cervical cancer include surgery, radiotherapy, chemotherapy, medications and combination treatments as well as other targeted treatments which are currently being developed. Immunotherapy enhances the human immune systems by targeting the PD-1/PD-L1 and CTLA-4 pathways while oncolytic virotherapy uses virus to lyse cancer cells. Gene therapy delivers modified genetic materials to the target cancer cells by enhancing or inhibiting the protein expression or production. This review will add to the general knowledge on aforementioned therapeutic strategies against cervical cancer.

Keywords


cancer; cervical; gene therapy; immunotherapy; oncolytic

Full Text:

PDF

References


Ahmadzadeh, M., Johnson, L. A., Heemskerk, B., Wunderlich, J. R., Dudley, M. E., White, D. E., & Rosenberg, S. A. (2009). Tumor antigen specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood, 114, 1537-1544.

Alsaab, H. O., Sau, S., Alzhrani, R., Tatiparti, K., Bhise, K., Kashaw, S. K., & Iyer, A. K. (2017). PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Frontiers in Pharmacology, 8(AUG), 1–15.

Blank, S. V, Rubin, S. C., Coukos, G., Amin, K. M., Albelda, S. M., & Molnar-Kimber, K. L. (2004). Replication-selective herpes simplex virus type 1 mutant therapy of cervical cancer is enhanced by low-dose radiation. Human Gene Therapy, 13(5), 627–639. https://doi.org/papers3://publication/doi/10.1089/10430340252837224

Boromand, N., Hasanzadeh, M., ShahidSales, S., Farazestanian, M., Gharib, M., Fiuji, H., Behboodi, N., Ghobadi, N., Hassanian, S. M., Ferns, G. A., & Avan, A. (2017). Clinical and prognostic value of the C-Met/HGF signaling pathway in cervical cancer. Journal of Cellular Physiology, 233(6), 4490-4496.

Brunet, J. F., Denizot, F., Luciani, M. F., Roux-Dosetto, M., Suzan, M., Mattei, M. G., & Golstein, P. (1987). A new member of the immunoglobulin superfamily–CTLA-4. Nature, 328(6127), 267–270.

Buchbinder, E. I., & Desai, A. (2016). CTLA-4 and PD-1 pathways similarities, differences, and implications of their inhibition. American Journal of Clinical Oncology: Cancer Clinical Trials, 39(1), 98–106.

Cao, Y., & Prescott, S. M. (2002). Many actions of cyclooxygenase-2 in cellular dynamics and in cancer. Journal of Cellular Physiology, 190, 279–286.

Carrington C. (2015). Oral targeted therapy for cancer. Australian Prescriber, 38(5), 171-176.

Chen, L., & Flies, D. B. (2013). Molecular mechanisms of T cell co-stimulation and co-inhibition. Nature Reviews Immunology, 13(4), 227–242.

Das, S., Menezes, M., Bhatia, S., Wang, X., Emdad, L., Sarkar, D., & Fisher, P. (2014). Gene therapies for cancer: Strategies, challenges and successes. Journal of Cellular Physiology, 230(2), 259-271. http://dx.doi.org/10.1002/jcp.24791

DePace, N. G. (1912). Sulla Scomparsa di un enormecancrobegetante del callodell’utero senza curachirurgica [Italian]. Ginecolgia 9: 82.

Disis, M. L. (2014). Mechanism of action of immunotherapy. Seminars in Oncology, 41 (Suppl. 5), S3–13.

Drake, C. G., Lipson, E. J., & Brahmer, J. R. (2014). Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nature Reviews Clinical Oncology, 11, 24–37.

El-Aneed, A. (2004). An overview of current delivery systems in cancer gene therapy. Journal of Controlled Release, 94(1), 1-14.

Ferguson, M. S., Lemoine, N. R., & Wang, Y. (2012). Systemic delivery of oncolytic viruses: Hopes and hurdles. Advances in Virology, 2012. https://doi.org/10.1155/2012/805629

Fife, B.T., & Bluestone, J.A. (2008). Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunological Reviews, 224, 166–182.

Fife, B. T., Pauken, K. E., Eager, T. N., Obu, T., Wu, J., Tang, Q., Azuma, M., Krummel, M. F., & Bluestone, J. A. (2009). Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR–induced stop signal. Nature Immunology, 10(11), 1185-1193.

Fisher, K. D., & Seymour, L. W. (2010). HPMA copolymers for masking and retargeting of therapeutic viruses. Advanced Drug Delivery Reviews, 62(2), 240–245. https://doi.org/10.1016/j.addr.2009.12.003

Fukuhara, H., Ino, Y., & Todo, T. (2016). Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Science, 107(10), 1373–1379. https://doi.org/10.1111/cas.13027

Goldrath, A. W., & Bevan, M. J. (1999). Selecting and maintaining a diverse T-cell repertoire. Nature, 402, 255–262.

Goldufsky, J., Sivendran, S., Harcharik, S., Pan, M., Bernardo, S., Stern, R. H., Friedlander, P., Ruby, C. E., Saenger, Y., & Kaufman, H. L. (2013). Oncolytic virus therapy for cancer. Oncolytic Virotherapy, 2, 31–46. https://doi.org/10.1111/j.1442-2042.2009.02383.x

He, C., Tabata, Y., & Gao, J. (2010). Non-viral gene delivery carrier and its three-dimensional transfection system. International Journal of Pharmaceutics, 386(1-2), 232-242.

Hollebecque, A., Meyer, T., Moore, K. N., Machiels, J-P. H., De Greve, J., & López-Picazo, J. M. (2017). An open-label, multicohort, phase I/II study of nivolumab in patients with virus-associated tumors: Efficacy and safety in recurrent or metastatic (R/M) cervical, vaginal, and vulvar cancers. Journal of Clinical Oncology, 35(15), 5504-5504.

Ibraheem, D., Elaissari, A., & Fessi, H. (2014). Gene therapy and DNA delivery systems. International Journal of Pharmaceutics, 459, 70-83.

Ishida, Y., Agata, Y., Shibahara, K., & Honjo, T. (1992). Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO Journal, 11(11), 3887–3895.

Juneja, V. R., McGuire, K. A., Manguso, R. T., LaFleur, M. W., Collins, N., Haining, W. N., Freeman, G. J., & Sharpe, A. H. (2017). PD-L1 on tumour cells is sufficient for immune evasion in immunogenic tumours and inhibits CD8 T cell cytotoxicity. Journal of Experimental Medicine, 214(4), 895–904.

Jenkins, R. W., Barbie, D. A., & Flaherty, K. T. (2018). Mechanisms of resistance to immune checkpoint inhibitors. British Journal of Cancer, 118(1), 9–16.

Kanerva, A., Lavilla-Alonso, S., Raki, M., Kangasniemi, L., Bauerschmitz, G. J., Takayama, K., Ristimäki, A., Desmond, R. A., & Hemminki, A. (2008). Systemic therapy for cervical cancer with potentially regulatable oncolytic adenoviruses. PLoS ONE, 3(8), e2917. http://doi.org/10.1371/journal.pone.0002917

Kelly, E. & Russel, S. J. (2007). History of oncolytic viruses: Genesis to Genetic Engineering. Molecular Therapy, 15(4): 651-659.

Kennedy, E., Kornepati, A., Goldstein, M., Bogerd, H., Poling, B., & Whisnant, A., Kastan, M. B., Cullen, B. R. (2014). Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. Journal of Virology, 88(20), 11965-11972.

Kirn, D., Martuza, R. L., & Zwiebel, J. (2001). Replication-selective virotherapy for cancer: Biological principles, risk management and future directions. Nature Medicine, 7(7), 781–787. https://doi.org/10.1038/89901

Kumar, N. (2016). Cervical cancer; a nightmare for womanhood: Review of recent advances. Women’s Health and Gynecology, 2(2), 017-025.

Lau, J., Cheung, J., Navarro, A., Lianoglou, S., Haley, B., Totpal, K., Sanders, L., Koeppen, H., Caplazi, P., McBride, J., Chiu, H., Hong, R., Grogan, J., Javinal, V., Yauch, R., Irving, B., Belvin, M., Mellman, I., Kim, J. M., & Schmidt, M. (2017). Tumour and host cell PD-L1 is required to mediate suppression of antitumour immunity in mice. Nature Communications, 8, 14572.

Li, J., Bonifati, S., Hristov, G., Marttila, T., Valmary-Degano, S., Stanzel, S., Schnölzer, M., Mougin, C., Aprahamian, M., Grekova, S. P., Raykov Z, Rommelaere J, & Marchini, A. (2013). Synergistic combination of valproic acid and oncolytic parvovirus H-1PV as a potential therapy against cervical and pancreatic carcinomas. EMBO Molecular Medicine, 5(10), 1537–1555. https://doi.org/10.1002/emmm.201302796

Liang, H. D., Tang, J., & Halliwell, M. (2010). Sonoporation, drug delivery, and gene therapy. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224(2), 343–361. https://doi.org/10.1243/09544119JEIM565

Liu, T. C., Galanis, E., & Kirn, D. (2007). Clinical trial results with oncolytic virotherapy: A century of promise, a decade of progress. Nature Clinical Practice Oncology, 4(2), 101–117. https://doi.org/10.1038/ncponc0736

Liu, B., Han, S., Tang, X., Han, L., & Li, C. (2014). Cervical cancer gene therapy by gene loaded PEG-PLA nanomedicine. Asian Pacific Journal of Cancer Prevention, 15(12), 4915-4918.

Mahoney, K. M., Rennert, P. D., & Freeman, G. J. (2015). Combination cancer immunotherapy and new immunomodulatory targets. Nature Reviews Drug Discovery, 14, 561–584.

Mandal, R., & Chan, T. A. (2016). Personalized oncology meets immunology: The path toward precision immunotherapy. Cancer Discovery, 6(7), 703-713.

Mezache, L., Paniccia, B., Nyinawabera, A., & Nuovo, G. J. (2015). Enhanced expression of PD L1 in cervical intraepithelial neoplasia and cervical cancers. Modern Pathology, 28, 1594-1602.

Motalleb, G. (2013). Virotherapy in cancer. Iranian Journal of Cancer Prevention, 6(2), 101–107.

Mullen, J. T. & Tanabe, K. K. (2002). Viral Oncolysis. The Oncologist. 7: 106-119.

Naidoo, J., Page, D. B., Li, B. T., Connell, L. C., Schindler, K., Lacouture, M. E., Postow, M. A., & Wolchok, J. D. (2015). Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Annals of Oncology, 26(12), 2375–2391.

Narayan, G. & Murty, V. V. (2010). Integrative genomic approaches in cervical cancer: implications for molecular pathogenesis. Future Oncology, 6, 1643-1652.

Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews Cancer, 12(4), 252–264.

Plitt, T., & Zamarin, D. (2015). Cancer therapy with Newcastle disease virus: rationale for new immunotherapeutic combinations. Clinical Investigation, 5(1), 75–87. https://doi.org/10.4155/CLI.14.102

Podolska, K., Stachurska, A., Hajdukiewicz, K., & Małecki, M. (2012). Gene therapy prospects-intranasal delivery of therapeutic genes. Advances in Clinical and Experimental Medicine, 21, 525-534.

Prestwich, R. J., Errington, F., Harrington, K. J., Pandha, H. S., Selby, P., & Melcher, A. (2008). Oncolytic Viruses: Do They Have a Role in Anti-Cancer Therapy? Clinical Medicine: Oncology, 2, 83–96.

Ribas, A. (2012). Tumor immunotherapy directed at PD-1. New England Journal of Medicine, 366, 2517-2519.

Riley, J. L. (2009). PD-1 signalling in primary T cells. Immunological Reviews, 229 (1), 114–125.

Russell, S. J., Peng, K-W. & Bell, J. C. (2012). Oncolytic Virotherapy. Nature Biotechnology, 30(7), 658–670. https://doi.org/10.1038/nbt.2287.ONCOLYTIC

Sato, N., Saga, Y., Uchibori, R., Tsukahara, T., Urabe, M., Kume, A., Fujiwara, H., Suzuki, M., Ozawa, K., & Mizukami, H. (2018). Eradication of cervical cancer in vivo by an AAV vector that encodes shRNA targeting human papillomavirus type 16-E6/E7. International Journal of Oncology, 52(3), 687-696.

Schmidt-Wolf, G., & Schmidt-Wolf, I. (2003). Non-viral and hybrid vectors in human gene therapy: an update. TRENDS in Molecular Medicine, 9(3), 67-72.

Scholz, C., & Wagner, E. (2012). Therapeutic plasmid DNA versus siRNA delivery: Common and different tasks for synthetic carriers. Journal of Controlled Release, 161(2), 554-565.

Shen Y., & Post L. (2007). Viral vectors and their applications. In B. N. Fields, D. M. Knipe & P. M. Howley (Eds), Fields Virology (539-564). Location: Wolters Kluwer Health/Lippincott Williams & Wilkins; Philadelphia.

Smith, R., Huebner, J., Rowe, P., & Thomas, B. (1956). Studies on the use of viruses in the treatment of carcinoma of the cervix. Cancer, 9(6), 1211–1128.

Stribley, J. M., Rehman, K. S., Niu, H., & Christman, G. M. (2002). Gene therapy and reproductive medicine. Fertility and Sterility, 77, 645–657.

Sze, D. Y., Reid, T. R., & Rose, S. C. (2013). Oncolytic virotherapy. Journal of Vascular and Interventional Radiology, 24(8), 1115–1122. https://doi.org/10.1016/j.jvir.2013.05.040

Teo, P., Cheng, W., Hedrick, J., & Yang, Y. (2016). Co-delivery of drugs and plasmid DNA for cancer therapy. Advanced Drug Delivery Reviews, 98, 41-63.

Topalian, S. L., Sznol, M., McDermott, D. F., Kluger, H. M., Carvajal, R., Sharfman, W. H., Brahmer, J. R., Lawrence, D. P., Atkins, M. B., Powderly, J. D., Leming, P. D., Lipson, E. J., Puzanov, I., Smith, D. C., Taube, J. M., Wigginton, J. M., Kollia, G. D., Gupta, A., Pardoll, D. M., Sosman, J. A., & Hodi, F. S. (2014). Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. Journal of Clinical Oncology, 32(10):1020-1030.

Unno, Y., Shino, Y., Kondo, F., Igarashi, N., Wang, G., Shimura, R., Yamaguchi, T., Asano, T., Saisho, H., Sekiya, S. & Shirasawa, H. (2005). Oncolytic viral therapy for cervical and ovarian cancer cells by Sindbis virus AR339 strain. Clinical Cancer Research, 11(12), 4553-4560.

Wong, H. H., Lemoine, N. R., & Wang, Y. (2010). Oncolytic viruses for cancer therapy: Overcoming the obstacles. Viruses, 2(1), 78–106. https://doi.org/10.3390/v2010078

Xiao, J., Zhou, J., Fu, M., Liang, L., Deng, Q., Liu, X., & Liu, F. (2017). Efficacy of recombinant human adenovirus-p53 combined with chemotherapy for locally advanced cervical cancer: A clinical trial. Oncology Letters, 13(5), 3676-3680.

Zhang, H., Zhang, Z., Wang, S., Zhang, S., & Bi, J. (2018). The mechanisms involved in miR-9 regulated apoptosis in cervical cancer by targeting FOXO3. Biomedicine and Pharmacotherapy, 102, 626-632.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

The Pertanika Journal of Scholarly Research Reviews, (e-ISSN: 2462-2028, ISSN: 2636-9141) published by Universiti Putra Malaysia Press