Magnetite Nanoparticles in Wastewater Treatment

Azdiya Suhada Abdul Rahim Arifin, Ismayadi Ismail, Abdul Halim Abdullah, Idza Riati Ibrahim, Farah Nabilah Shafiee


Clean water is very important for health and well-being of humans and ecosystem. However, over the year, a billion tons of industrial waste, fertilizers and chemical waste were dumped untreated into water bodies, such as rivers, lake and oceans contributing towards water pollution, then threatening human health and ecosystem. Hence, the need for clean water has urged scientists to research and find solutions for improving water quality. Application of nanoparticles in wastewater treatment improves the environmental quality by elimination of harmful pollutants in wastewater. Magnetite is one of the nanoparticles used in wastewater treatment because of its specific large surface area, high reactivity in adsorption and recoverable from treated water via magnetic separation technology. Preparation method of magnetite nanoparticles is the important key to its adsorption efficiency.

Full Text:



Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. B. M. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257–275.

Almásy, L., Creanga, D., Nadejde, C., Rosta, L., Pomjakushina, E., & Ursache-Oprisan, M. (2015). Wet milling versus co-precipitation in magnetite ferrofluid preparation. Journal of the Serbian Chemical Society, 80(3), 367–376.

Blaney, L. (2007). Magnetite (Fe3O4): Properties, synthesis, and applications. Lehigh Review, 15(5), 32–81.

Bolto, B. A., & Spurling T. H. (1991). Water purification with magnetic particles. Environmental Monitoring and Assessment 19: 139-143.

Bond, R.G. & Straub, C.P. (1974). CRC Hand book of Environmental control, Vol. IV: Wastewater, Treatment and Disposal. CRC Press. USA.

Borchardt, D., & Statzner, B. (1990). Ecological impact of urban stormwater runoff studied in experimental flumes: Population loss by drift and availability of refugial space. Aquatic Sciences, 52(4), 299–314.

Cabrera, L., Gutierrez, S., Menendez, N., Morales, M. P., & Herrasti, P. (2008). Magnetite nanoparticles: Electrochemical synthesis and characterization. Electrochimica Acta, 53(8), 3436– 3441.

Chambers, P. A., & Mills, T. (1996). Dissolved Oxygen Conditions and Fish Requirements in the Athabasca, Peace and Slave Rivers: Assessment ot Present Conditions and Future Trends. Northern River Basins Study Edmonton, Alberta.

Cullity, B. D. (1972). Introduction to Magnetic Materials. Addison-Wesley Publishing Company, USA.

Cornell, R. M., & Schertzman, W. (2003). The iron oxides: structures, properties, reaction, occurrences and uses, second edition. Wiley-Vch Verlag Gmbh & Co. KGaA. 2: 9-37.

De Carvalho, J. F., de Medeiros, S. N., Morales, M. A., Dantas, A. L., & Carriço, A. S. (2013). Synthesis of magnetite nanoparticles by high energy ball milling. Applied Surface Science, 275, 84–87.

De Latour, C. (1976). Seeding principles of high gradient magnetic separation. Journal American Water Works Association, 68: 443-446. :

Devi, N. L., Yadav, I. C., Shihua, Q. I., Singh, S., & Belagali, S. L. (2011). Physicochemical characteristics of paper industry effluents - A case study of South India Paper Mill (SIPM). Environmental Monitoring and Assessment, 177(1-4), 23–33.

Edwards, M., and Benjamin M. M. (1989). Adsorptive filtration using coated sand: A new approach for treatment of metal-bearing wastes. Research Journal of the Water Pollution Control Federation, 61:1523-1533.

Elmer, E. W. (1934). Loudspeaker construction. United State Patent Office. Cl.179-115.5 Environmental Canada. (1997). Review of the impacts of municipal wastewater effluents on Canadian waters and human health.

Friák, M., Schindlmayr, A., & Scheffler, M. (2007). Ab initio study of the half-metal to metal transition in strained magnetite. New Journal of Physics, 9(1), 5–5.

Giraldo, L., Erto, A., & Moreno-Piraján, J. C. (2013). Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization. Adsorption, 19(2-4), 465–474.

Goya, G. F. (2004). Handling the particle size and distribution of Fe3O4 nanoparticles through ball milling. Solid State Communications, 130(12), 783–787. Hill, R. J., Craig, J. R., & Gibbs, G. V. (1979). Systematics of the spinel structure type. Physics and Chemistry of Minerals, 4(4), 317–339.

Honda, R., Tsuritani, I., Ishizaki, M., & Yamada, Y. (1997). Zinc and Copper Levels in Ribs of Cadmium-Exposed Persons with, Environmental research, 48, 41–48.

Hong, R. Y., Li, J. H., Qu, J. M., Chen, L. L., & Li, H. Z. (2009). Preparation and characterization of magnetite/dextran nanocomposite used as a precursor of magnetic fluid. Chemical Engineering Journal, 150(2-3), 572–580.

Hu, J., Chen, G., & Lo, I. M. C. (2005). Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Research, 39(18), 4528–36.

Iida, H., Nakanishi, T., Takada, H., & Osaka, T. (2006). Preparation of magnetic iron-oxide nanoparticles by successive reduction-oxidation in reverse micelles: Effects of reducing agent and atmosphere. Electrochimica Acta, 52(1), 292–296.

Jordão, C. P., Pereira, M. G., & Pereira, J. L. (2002). Metal contamination of river waters and sediments from effluents of kaolin processing in Brazil. Water, Air, and Soil Pollution, 140(1-4), 119–138.

Kahani, S. A., & Yagini, Z. (2014). A comparison between chemical synthesis magnetite nanoparticles and biosynthesis magnetite. Bioinorganic Chemistry and Applications, 2014.

Karami, H., & Chidar, E. (2012). Pulsed-electrochemical synthesis and characterizations of magnetite nanorods. Int. J. Electrochem. Sci, 7(3), 2077–2090. Retrieved from

Khérici-Bousnoubra, H., Khérici, N., Derradji, E. F., Rousset, C., & Caruba, R. (2009). Behaviour of chromium VI in a multilayer aquifer in the industrial zone of Annaba, Algeria. Environmental Geology, 57(7), 1619–1624.

Lee, J., Isobe, T., & Senna, M. (1996). Magnetic properties of ultrafine magnetite particles and their slurries prepared via in-situ precipitation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 109, 121–127.

Lee, J., Lee, Y., Youn, J. K., Na, H. Bin, Yu, T., Kim, H., Lee, S., Koo Y., Kwak, J. H., Park, H. G., Chang, H. N. Hwang, M., Park, J.G., Kim, J., & Hyeon, T. (2008). Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts. Small (Weinheim an Der Bergstrasse, Germany), 4(1), 143–52.

Lee, Y., Lee, J., Bae, C. J., Park, J. G., Noh, H. J., Park, J. H., & Hyeon, T. (2005). Large-Scale Synthesis of Uniform and Crystalline Magnetite Nanoparticles Using Reverse Micelles as Nanoreactors under Reflux Conditions. Advanced Functional Materials, 15(3), 503–509.

Lei, L., Hao, X., Zhang, X., & Zhou, M. (2007). Wastewater treatment using a heterogeneous magnetite (Fe3O4) non-thermal plasma process. Plasma Processes and Polymers, 4(4), 455–462.

Lim, E. K., Jang, E., Lee, K., Haam, S., & Huh, Y. M. (2013). Delivery of cancer therapeutics using nanotechnology. Pharmaceutics, 5(2), 294–317.

Mann, A. S., & Mann, S. (2012). Removal of model waste-water bacteria by magnetite in water and waste-water treatment processes. Edmonton, Alberta.

Michael, D. J., Prenger, C., Worl, L., Robert, W., Hill, D., Dennis, P. & Eric, R. (2002). Improvements in wastewater treatment at the leadville mine drainage tunnel. Department of Chemistry and Biochemistry New Mexico State University Las Cruces.

Muliwa, A. (2013). Magnetic Adsorption Separation Process for Industrial Wastewater Treatment Using Polypyrrole-magnetite Nanocomposite. Tshwane University of Technology.

Novakova, A. A., Lanchinskaya, V. Y., Volkov, A. V., Gendler, T. S., Kiseleva, T. Y., Moskvina, M. A., & Zezin, S. B. (2003). Magnetic properties of polymer nanocomposites containing iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 258-259, 354–357.

Oskay, E. (2003) Treatment of wastewater using magnetite. Dokuz Eylül University Graduate School of Natural and Applied Sciences, Turkey.

Österle, W., Orts-Gil, G., Gross, T., Deutsch, C., Hinrichs, R., Vasconcellos, M. A. Z., Zoz, H., Yigit, D., and Sun, X. (2013). Impact of high energy ball milling on the nanostructure of magnetite-graphite and magnetite-graphite-molybdenum disulphide blends. Materials Characterization, 86, 28–38.

Panasiuk, O. (2010). Phosphorus Removal and Recovery from Wastewater Using Magnetite. Royal Institute of Technology, Stocholm.

Petcharoen, K., & Sirivat, a. (2012). Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 177(5), 421–427.

Purushotham, D., Narsing Rao, A., Ravi Prakash, M., Ahmed, S., & Ashok Babu, G. (2011). Environmental impact on groundwater of Maheshwaram Watershed, Ranga Reddy district, Andhra Pradesh. Journal of the Geological Society of India, 77(6), 539–548.

Rai, P. K., & Tripathi, B. D. (2009). Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli Industrial region, India. Environmental Monitoring and Assessment, 148(1-4), 75–84.

Raj, K., & Moskowitz, R. (1990). Commercial applications of ferrofluids. Journal of Magnetism and Magnetic Materials, 85(1-3), 233–245.

Rajendran, K., Balakrishnan, G. S., & Kalirajan, J. (2015). Synthesis of Magnetite Nanoparticles for Arsenic Removal from Ground Water Pond, 8(4), 670–677.

Raju, N. J., Ram, P., & Dey, S. (2009). Groundwater quality in the lower Varuna River basin, Varanasi district, Uttar Pradesh. Journal of the Geological Society of India, 73(2), 178–192.

Rehman, A., & Sohail Anjum, M. (2010). Cadmium uptake by yeast, candida tropicalis, isolated from industrial effluents and its potential use in wastewater clean-up operations. Water, Air, and Soil Pollution, 205(1-4), 149–159.

Santoyo-Salazar, J., Castellanos-Roman, M. A., & Beatriz Gómez, L. (2007). Structural and magnetic domains characterization of magnetite nanoparticles. Materials Science and Engineering: C, 27(5-8), 1317–1320.

Shultz, M.F., Benjamin, M.M., & Ferguson, J.F. (1987). Adsorption and desorption of metals on ferrihydrite; Reversibility of the Reaction and adsorption properties of the regenerated solid. Environmental. Science. Technology. 21:863-869.

Singh, N., Sharma, B. K., & Bohra, P. C. (2000). Impact assessment of industrial effluent of arid soils by using satellite imageries. Journal of the Indian Society of Remote Sensing, 28(2-3), 79–92.

Stephen, Z. R., Kievit, F. M., & Zhang, M. (2012). Magnetite nanoparticles for medical MR imaging. NIH Public Access 14(11): 330–338.

Sun, J., Zhou, S., Hou, P., Yang, Y., Weng, J., Li, X., & Li, M. (2006). Synthesis and characterization of biocompatible Fe 3 O 4 nanoparticles, Journal of Biomedical Materials Research, 80A: 333– 341.

Terashima, Y., Ozaki, H., & Sekine, M. (1986). Removal of dissolved heavy metals by chemical coagulation, magnetic seeding and high gradient magnetic filtration. Water Research, 20(5), 537– 545.

Thurgod M. (2004). Review of environmental and health effects of waste management : municipal solid waste and similar wastes. Department for Environment, Food and Rural Affairs, UK.

Uskoković, V., & Drofenik, M. (2007). Reverse micelles: Inert nano-reactors or physico-chemically active guides of the capped reactions. Advances in Colloid and Interface Science, 133(1), 23–34.

Wang, J., & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances, 24(5), 427–451.

Wang, Q., Kim, D., Dionysiou, D. D., Sorial, G. A., & Timberlake, D. (2004). Sources and remediation for mercury contamination in aquatic systems - A literature review. Environmental Pollution, 131(2), 323–336.

Wang, S. Y., Tang, Y. K., Li, K., Mo, Y. Y., Li, H. F., & Gu, Z. Q. (2014). Combined performance of biochar sorption and magnetic separation processes for treatment of chromium-contained electroplating wastewater. Bioresource Technology, 174, 67–73.

Wu, W., He, Q., & Jiang, C. (2008). Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Research Letters, 3(11), 397–415.

Xuan, S., Hao, L., Jiang, W., Gong, X., Hu, Y., & Chen, Z. (2007). Preparation of water-soluble magnetite nanocrystals through hydrothermal approach. Journal of Magnetism and Magnetic Materials, 308(2), 210–213.

Yao, Y., Jiang, H., Wu, J., Gu, D., & Shen, L. (2012). Synthesis of Fe3O4 /polyaniline nanocomposite in reversed micelle systems and its performance characteristics. Procedia Engineering, 27(2011), 664–670.

Ye, X. R., Daraio, C., Wang, C., Talbot, J. B., & Jin, S. (2006). Room temperature solvent-free synthesis of monodisperse magnetite nanocrystals. Journal of Nanoscience and Nanotechnology, 6(3), 852–856.

Zhang, F., Song, Y., Song, S., Zhang, R., & Hou, W. (2015). Synthesis of magnetite-graphene oxide-layered double hydroxide composites and applications for the removal of Pb(II) and 2,4-dichlorophenoxyacetic acid from aqueous solutions. ACS Applied Materials and Interfaces, 7(13), 7251–7263.

Zhang, L., He, R., & Gu, H. C. (2006). Oleic acid coating on the monodisperse magnetite nanoparticles. Applied Surface Science, 253(5), 2611–2617.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

The Pertanika Journal of Scholarly Research Reviews, (e-ISSN: 2462-2028, ISSN: 2636-9141) published by Universiti Putra Malaysia Press