Carbon Nanotubes Reinforced Aluminum Matrix Composites - A Review of Processing Techniques

Meysam Toozandehjani, Khamirul Amin Matori, Farhad Ostovan, Sidek Abdul Aziz, Md Shuhazely Mamat, Arshin Oskoueian


Carbon nanotube reinforced aluminium matrix composites (Al-CNTs) have been widely used in aerospace and automotive industries where high quality and strength is required. The enhanced mechanical properties of Al-CNTs are closely related to processing technique due to challenges within production of these composite materials. In the current review, solid state processing techniques used for synthesizing Al-CNTs have been reviewed to provide an insight into the features and capabilities of each technique regarding the incorporation of CNT reinforcements. To conclude, the mechanical performance of Al-CNT composites is mainly decided by the capability of each technique in the dispersion of CNTs within the aluminum matrix.

Full Text:



Abdul Karim, M. R., Pavese, M., Ambrosio, E. P., Ugues, D., Lombardi, M., Biamino, S., Badini, C., & Fino, P. (2013). Production and characterization of Ni and Cu composite coatings by electrodeposition reinforced with carbon nanotubes or graphite nanoplatelets. Journal of Physics: Conference Series. 439(1), 012019.

Al-Aqeeli, N., Abdullahi, K., Suryanarayana, C., Laoui, T., & Nouari, S. (2012). Structure of mechanically milled CNT-reinforced Al-alloy nanocomposites. Materials and Manufacturing Processes, 28(9), 984-990.

Anselmi-Tamburini, U., Garay, J. E., & Munir, A. Z. (2005). Fundamental investigations on the spark plasma sintering/synthesis process. III. Current effect on reactivity. Materials Science and Engineering A, 407(1-2), 24–30.

Anselmi-Tamburini, U., Gennari, S., Garay, J. E., & Munir, Z. A. (2005). Fundamental investigations on the spark plasma sintering/synthesis process: II. Modeling of current and temperature distributions. Materials Science and Engineering A, 394(1-2), 139–148.

Balasubramaniam, R. (2007). Callister's Materials Science and Engineering: Indian Adaptation (W/Cd). John Wiley & Sons.

Balog, M., Simancik, F., Bajana, O., & Requena, G. (2009). ECAP vs. direct extrusion-techniques for consolidation of ultra-fine Al particles. Materials Science and Engineering A, 504(1-2), 1–7.

Borah, P. (2010). Spark Plasma Extrusion of dual matrix aluminum-carbon nanotube composites. San Diego State University, USA.

Carreno-Gallardo, C., Estrada-Guel, I., Neria, M. A., Rocha-Rangel, E., Romero-Romo, M., Lopez-Melendez, C., & Martínez-Sáncheza, R. (2009). Carbon-coated silver nanoparticles dispersed in a 2024 aluminum alloy produced by mechanical milling. Journal of Alloys and Compounds, 483(1–2), 355–358.

Casati, R., & Vedani, M. (2014). Metal matrix composites reinforced by nano-particles-A Review, Metals, 2014, 4, 65-83.

Chawla, K. K. (2009). Composite Materials Science and Engineering. New York: Springer.

Chawla, N., & Chawla, K.K. (2005). Metal Matrix Composites. New York: Springer.

Choi, H. J., Kwon, G.B., Lee, G.Y., & Bae, D. H. (2008). Reinforcement with carbon nanotubes in aluminum matrix composites. Scripta Materialia, 59(3), 360–363.

Choi, H. J., Shin, J. H., Min, B. H., & Bae, D. H. (2010). Deformation behavior of Al–Si alloy based nanocomposites reinforced with carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 41(2), 327–329.

Clyne, T. W., & Withers, P. J. (1995). An Introduction to Metal Matrix Composites. New York: Cambridge University Press.

Demczyka, B. G. Wang, Y. M., Cumings, J., Hetman, M., Han, W., Zettl, A., & Ritchie, R. O. (2002). Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Materials Science and Engineering A, 334(1), 173-178.

Deng, C. F., Wang, D. Z., Zhang, X. X., & Li, A. B. (2007). Processing and properties of carbon nanotubes reinforced aluminum composites. Materials Science and Engineering A, 444(1), 138-145.

Deng, C. F., Zhang, X. X., Ma, Y. & Wang, D. Z. (2007). Fabrication of aluminum matrix composite reinforced with carbon nanotubes. Rare Metals, 26(5), 450–455.

Deng, C. F., Zhang, X. X., Wang, D. Z., Lin, Q., & Li, A. B. (2007). Preparation and characterization of carbon nanotubes/aluminum matrix composites. Materials Letters, 61(8–9), 1725–1728.

Derakhshandeh, R. H., & Jenabali Jahromi, A. (2011). An investigation on the capability of equal channel angular pressing for consolidation of aluminum and aluminum composite powder. Materials and Design, 32(6), 3377-3388.

Derakhshandeh, R. H., Jenabali Jahromi, S. A., Moresedgh, A., & Tabandeh Khorshid, M. (2012). A comparison between ECAP and conventional extrusion for consolidation of aluminum metal matrix composite, Journal of Materials Engineering and Performance, 21(9), 1885-1892.

Dowson, G. (1990). Powder metallurgy: the process and its products. Springer Netherlands.

Dudina, D. V., & Mukherjee, A. K. (2013). Reactive Spark Plasma Sintering: Successes and Challenges of Nanomaterial Synthesis. Journal of Nanomaterials,

Ebbesen, T. W. (1996). Wetting, filling and decorating carbon nanotubes. Journal of Physics and Chemistry of Solids, 57 (6), 951-955.

Edalati, K., & Horita, Z. (2010). Application of high-pressure torsion for consolidation of ceramic powders. Scripta Materialia, 63(2), 174–177.

Esawi, A. M. K., & El Borady, M. A. (2008). Carbon nanotube-reinforced aluminum strips, Composites Science and Technology, 68(2), 486–492

Esawi, A. M. K., Morsi, K., Sayed, A., Abdel Gawad, A., & Borah, P. (2009). Fabrication and properties of dispersed carbon nanotube–aluminum composites, Materials Science and Engineering: A, 508(1–2), 167–173

Esawi, A. M. K., & Morsi, K. (92007). Dispersion of carbon nanotubes (CNTs) in aluminum powder. Composites Part A: Applied Science and Manufacturing, 38 (2), 646-650.

Esawi, A. M. K., Morsi, K., Sayed, A., Abdel Gawad, A., & Borah, P. (2009). Fabrication and properties of dispersed carbon nanotube–aluminum composites. Materials Science and Engineering A, 508 (1-2), 167–173.

Esawi, A. M. K., Morsi, K., Sayed, A., Taher, M., & Lanka, S. (2010). Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminum composites. Composites Science and Technology, 70 (16), 2237–2241.

Everett, R. K., & Arsenault, R. J. (1991). Metal Matrix Composites: Processing and Interfaces. New York: Cambridge University Press.

Fayed, M. E., & Otten. L. (1984). Handbook of Powder Science and Technology. Van Nostrand Reinhold Company Inc.

Fogagnoloa, J. B., Velascoa, F., Robert, M. H., & Torralba, J. M. (2003). Effect of mechanical alloying on the morphology, microstructure and properties of aluminum matrix composite powders. Materials Science and Engineering A, 342(1), 131-143.

Geim, A. K., & Philip, K. (2008). Carbon wonderland. Scientific American, 298(4), 90-97.

George, R., Kashyap, K. T., Rahul, R., & Yamdagni, S. (2005). Strengthening in Aluminum-Carbon Nanotube Composites. Scripta Materialia, 53(10), 1159–1163.

He, F., Han, Q., & Jackson, M. J. (2008). Nanoparticulate reinforced metal matrix nanocomposites-a review, Internatonal Journal of Nanoparticles, 1(4), 301- 309.

Hull, D., & Clyne, T. W. (1996). An Introduction to Composite Materials. New York: Cambridge University Press.

Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354,56-58.

Jafari, M., Abbasi, M. H., Enayati, M. H., & Karimzadeh, F. (2012). Mechanical properties of anostructured Al2024–MWCNT composite prepared by optimized mechanical milling and hot pressing methods. Advanced Powder Technology, 23(2), 205–210.

Jenei, P., Yoon, E. Y., Gubicza, J., Kim, H. S., Labar, L & T. Ungar. (2011). Microstructure and hardness of copper-carbon nanotube composites consolidated by High Pressure Torsion. Materials Science and Engineering A, 528(13-14), 4690–4695.

Joo, S. H., Yoon, S. C., Lee, C. S., Nam, D. H., Hong, S. H., & Kim, H. S. (2010). Microstructure and tensile behavior of Al and Al-matrix carbon nanotube composites processed by high pressure torsion of the powders. Journal of Materials Science, 45(17), 4652-4658.

Kaczmar, J. W., Pietrzak, K., & Wlosinski, W. (2000). The production and application of metal matrix composite materials. Journal of Materials Processing and Technology. 106, 58–67.

Kainer, K. U. (2006). Metal Matrix Composites: Custom-Made Materials for Automotive And Aerospace Engineering, Wiley-VCH.

Kevorkijan,V. M. (1999). Aluminum composites for automotive applications: A Global Perspective. JOM, 51(11), 54-58.

Kim, H. S., Park, W. I., Kang, M., & Jin, H. –J. (2008). Multiple light scattering measurement and stability analysis of aqueous carbon nanotube dispersions. Journal of Physics and Chemistry of Solids, 69(5), 1209- 1212.

Kollo, L., Kallip, K., Gomon, J. K., & Kommel, L. (2012). Hot consolidation of aluminium and aluminium nano-mmc powders by equal channel angular pressing, Materials Science, 18(3), 234-237.

Koo, J. (2006). Polymer nanocomposites: processing, characterization, and applications. McGraw-Hill Professional.

Kwon, H., Estili, M., Takagi, K., Miyazaki, T., & Kawasaki, A. (2009). Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites, Carbon, 47, 570–577

Kwon, H., & Kawasaki, A. (2009). Extrusion of spark plasma sintered aluminum–carbon nanotube composites at various sintering temperatures. Journal of Nanoscience and Nanotechnology, 9(11), 6542-6548.

Kwon, H. & Leparoux, M. (2012). Hot extruded carbon nanotube reinforced aluminum matrix composite materials, Nanotechnology, 23, 415701.

Kwon, H., Park, D., Silvain, J. F., & Kawasaki, A. (2010). Investigation of carbon nanotube reinforced aluminum matrix composite materials. Composites Science and Technology, 70(3), 546-550.

Lau, K. T., Chipara, M., Ling, H. Y., & Hui, D. (2004). On the effective elastic moduli of carbon nanotubes for nanocomposite structures. Composites Part B: Engineering, 35(2), 95-101.

Li, J., Ma, P. C., Chow, W. S., To, C. K., Tang, B.Z. & Kim, J. -K. (2007). Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Advanced Functional Materials, 17(16), 3207-3215.

Li, S., Sun, B., Imai, H., Mimoto, T., & Kondoh, T. (2013). Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite. Composites Part A: Applied Science and Manufacturing 48, 57-66.

Lloyd, D. J. (1994). Particle reinforced aluminium and magnesium matrix composites. International Materials Reviews, 39 (1), 1-23.

Long, B. D., Othman, R., Zuhailawati, H. & Umemoto, M. (2014). Comparison of two powder processing techniques on the properties of Cu-NbC composites, Advances in Materials Science and Engineering,

Mamedov, V. (2002). Spark plasma sintering as advanced pm sintering method. Powder Metallurgy, 45(4), 322–328.

Maqbool, A., Asif Hussain, M. A., Khalid, F. A., Bakhsh, N., Hussain, A., & Kim, M. H. (2013). Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites. Materials Characterization, 86, 39-48.

Miracle, D.B., & Donaldson, S. L. (2001). ASM Handbook. ASM International.

Miracle, D. B. (2005). Metal matrix composites – from science to technological significance, Composite Science and Technology, 65 (15-16), 2526–2540.

Monthioux, M., & Vladimir, L. K. (2006). Who should be given the credit for the discovery of carbon nanotubes?." Carbon, 44 (9), 1621-1623.

Morsi, K., El-Desouky, A., Johnson, B., Mar, A., & Lanka, S. (2009). Spark plasma extrusion (SPE): prospects and potential. Scripta Materialia, 61(4), 395–398.

Morsi, K., & Esawi, A. M. K. (2007). Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminum (Al)–CNT composite powders. Journal of Materials Science, 42 (13), 4954–4959.

Morsi, K., Esawi, A. M. K., Borah, P., Lanka, S., Sayed, A., & Taher, M. (2010). Properties of single and dual matrix aluminum–carbon nanotube composites processed via spark plasma extrusion (SPE). Materials Science and Engineering A. 527 (21-22), 5686–5690.

Morsi, K., Esawi, A. M. K., Lanka, S., Sayed, A., & Taher, M. (2010). Spark plasma extrusion (SPE) of ball-milled aluminum and carbon nanotube reinforced aluminum composite powders. Composites Part A: Applied Science and Manufacturing, 41(2), 322–326.

Munirozzaman, M., & Winey. K. I. (2006). Polymer nanocomposites containing carbon nanotubes. Macromolecules, 39 (16), 5194-5205.

Munir, Z. A., Anselmi-Tamburini, U., & Ohyanagi, M., (2006). The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. Journal of Materials Science, 41(3), 763–777.

Munir, Z. A., Quach, D. V., & Ohyanagi, M. (2011). Electric current activation of sintering: a review of the pulsed electric current sintering process. Journal of the American Ceramic Society, 94(1), 1–19.

Musa, M. Š., & Schauperl, Z., (2013). ECAP – New consolidation method for production of aluminium matrix composites with ceramic reinforcement, Processing and Application of Ceramics, 7 (2), 63–68

Orrùa, R., Licheri, R., Locci, A. M., Cincotti, A., & Cao, G. (2009). Consolidation/ synthesis of materials by electric current activated/ assisted sintering, Materials Science and Engineering R, 63(4-6), 127–287.

Ostovan, F., Matori, K. A., Toozandehjani, M., Oskoueian, A., Yusoff, H. M., Yunus, R., Ariff, A. H. M., Quah, H. J., Lim, W. F. (2015). Effects of CNTs content and milling time on mechanical behavior of MWCNT-reinforced aluminum nanocomposites. Materials Chemistry and Physics, 166, 160–166.

Perez-Bustamante, R., Estrada-Guel, I., Amezaga-Madrid, P., Miki-Yoshida, M., Herrera-Ramirez, J. M., & Martinez-Sanchez, R. (2010). Microstructural characterization of Al–MWCNT composites produced by mechanical milling and hot extrusion. Journal of Alloys and Compounds, 495(2), 399–402.

Perez-Bustamante, R., Estrada-Guel, I., Antunez-Flores, W., Miki-Yoshida, M., Ferreira, P. J., & Martinez-Sanchez, R. (2008). Novel Al-matrix nanocomposites reinforced with multi-walled carbon nanotubes. Journal of Alloys and Compounds, 450(1-2), 323–326.

Poirier, D., Gauvin, R., & Drew, R. A. L. (2009). Structural characterization of a mechanically milled carbon nanotube/aluminum mixture. Composites A, 40(9), 1482–1489.

Poletti, C., Balog, M., Schubert, T., Liedtke, V., & Edtmaier, C. (2008). Production of titanium matrix composites reinforced with SiC particles, Composites Science and Technology, 68(9), 2171–2177.

Popov, V. N. (2004). Carbon nanotubes: properties and application. Materials Science and Engineering: R: Reports 43 (3), 61-102.

Popov, V. N., Van Doren V. E., & Balkanski. M. (2000). Elastic properties of crystals of single-walled carbon nanotubes. Solid State Communications, 114(7), 395-399.

Quang, P., Jeong, Y. G., Yoon, S. C., Hong, S. H., &, Kim, H. S. (2007). Consolidation of 1 vol.% carbon nanotube reinforced metal matrix nanocomposites via equal channel angular pressing, Journal of Materials Processing Technology, 187–188, 318–320.

Robertson, J. (2004). Realistic applications of CNT. Materials Today, 7(10), 46–52.

Rohatgi, P. K. (1993). Metal matrix composites. Defence Science Journal, 43(4), 323-349.

Saheb, N., Iqbal, Z., Khalil, Hakeem, A. S., Al Aqeeli, N., Laoui, T., Al-qutub, A., & Kirchner, R. (2012). Spark Plasma Sintering of metals and metal matrix nanocomposites: a review. Journal of Nanomaterials,

Salvetat, J. P., Bonard, J. M., Thomson, N. H., Kulik, A. J., Forro, L., Benoit, W., & Zuppiroli, L. (1999). Mechanical properties of carbon nanotubes. Applied Physics A, 69 (3), 255-260.

Samal, S. S., & Bal, S. (2008). Carbon nanotube reinforced ceramic matrix composites-A review. (2008). Journal of Minerals & Materials Characterization & Engineering, 7 (4), 355-370.

Sanaty-Zadeh, A. (2012). Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect. Materials Science and Engineering: A, 531(1), 112–118.

Schey, J. (2007). Introduction to Manufacturing Processes. McGraw Hill.

Senthil Saravanan, M. S., Kumaresh Babu, S. P., Sivaprasad, K., Ravisankar, B., Susila, P., Murty, B. S. (2011). Consolidation of CNT-reinforced AA4032 nanocomposites by ECAP. International Journal of Nanoscience, 10, 233. doi: 10.1142/s0219581x11007818

Silvestre, N., Bruno F., & José N. C. L. (2014). Compressive behavior of CNT-reinforced aluminum composites using molecular dynamics. Composites Science and Technology 90, 16-24.

Sinclair, I., & Gregson, P. J. (1997). Structural performance of discontinuous metal matrix composites. Materials science and technology, 13(9), 709-726.

Singer, R. F., Oliver, W. C., & Nix, W. D. (1980). Identification of dispersoid phases created in aluminum during mechanical alloying. Metallurgical Transactions A, 11(11), 1895-1901.

Singh, H., Sarabjit., Jit, N., & Tyagi, A. K. (2011). An overview of metal matrix composite: processing and sic based mechanical properties, Journal of Engineering Research and Studies, 2(4), 72-78.

So, K. P., Leea, H., Duong, D. L., Kim, T. H., Lim, S. C., An, K. H., & Lee, Y. h. (2011). Improving the wettability of aluminum on carbon nanotubes. Acta Materialia, 59(9), 3313-3320.

Sun. F., Shi, C., Rhee, K. Y., & Zhao, N. (2013). In situ synthesis of CNTs in Mg powder at low temperature for fabricating reinforced Mg composites. Journal of Alloys and Compounds 551, 496-501.

Surappa, M. K. (2003). Aluminium matrix composites: challenges and opportunities. Sadhana, 28 (1-2), 319-334.

Suryanarayana, C., & Nasser Al-Aqeeli. (2013). Mechanically alloyed nanocomposites. Progress in Materials Science, 58(4), 383-502.

Suryanarayana, C. (2004). Mechanical Alloying and Milling. New York: Marcel Dekker. Suryanarayana, C. (2001). Mechanical alloying and milling. Progress in Materials Science,46(1-2), 1-184.

Tang, F., Anderson, I. E., & Biner. S. B. (2002). Solid state sintering and consolidation of Al powders and Al matrix composites, Journal of Light Metals, 2, 201–214.

Tan, M. J., & Zhang, X. (1998). Powder metal matrix composites: selection and processing, Materials Science and Engineering A, 244(1), 80–85.

Tham, L. M., Gupta, M. & Cheng, L. (2001). Effect of limited matrix–reinforcement interfacial reaction on enhancing the mechanical properties of aluminium–silicon carbide composites. Acta Materialia, 49(16), 3243-3253.

Thostenson, E. T., Ren, Z., & Chou. T. W. (2001). Advances in the science and technology of carbon nanotubes and their composites: a review. Composites science and technology 61 (13), 1899-1912.

Tjong, S. C. (2007). Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Advanced Engineering Materials. 9 (8), 639–52.

Tokita, M. (1993). Trends in advanced SPS spark plasma sintering systems and technology, Journal of the Society of Powder Technology Japan, 30(11), 790–804.

Tokunaga, T., Kenji K., & Zenji, H. (2008). Production of aluminum-matrix carbon nanotube composite using high pressure torsion. Materials Science and Engineering A, 490(1), 300-304.

Toozandehjani, M. (2014). Characterization of age-hardening treatment of AA6061 aluminum alloy through destructive and non-destructive testing techniques, (Unpublished Master Thesis). Universiti Putra Malaysia.

Toozandehjani, M., Mustapha, F., Ismarrubie, N. Z., Ariffin, M. K. A., Matori, K. A., Ostovan, F., & Lim, W. F. (2015). Characterization of aging behavior of aa6061 aluminum alloy through destructive and ultrasonic non-destructive testing techniques. Transaction of Indian Institute of Metals, 68 (4), 561-569.

Treacy, M. M. J., Ebbesen T. W., & Gibson J. M. (1996). Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 381, 678 - 680.

Tunvir, K., Amkee K., & Seung H. N. (2008). The effect of two neighboring defects on the mechanical properties of carbon nanotubes. Nanotechnology, 19(6) , 065703.

Valiev, R. Z., & Langdon, T. G. (2006). Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in Materials Science, 51 (7), 881–981

Valiev, R. Z., Mishral, R. S., Grozal, J., & Mukherjee, A. K. (1996). Processing of nanostructured nickel by severe plastic deformation consolidation of ball-milled powder. Scripta Materialia, 34(9), 1443–1448.

Yang, M., Koutsos V., & Zaiser M. (2007). Size effect in the tensile fracture of single-walled carbon nanotubes with defects. Nanotechnology, 18(15), 155708.

Yu, M. F., Files, B. S., Arepalli, S., & Ruoff, R. S. (2000). Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical review letters 84 (24), 5552.

Yu, M. F., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F., & Ruoff, R. S. (2000). Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287(5453), 637-640.

Zhan, G. D., Kuntz, J. D., Wan, J., & Mukherjee, A.K. (2003). Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nature materials, 2(1), 38-42.

Zhang, Z. & Chen, D. L. (2006). Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength, Scripta Materialia, 54 (7), 1321–1326.

Zhang, Z., & Chen, D.L. (2008). Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Materials Science and Engineering: A, 483–484, 148– 152.

Zhilyaev, A. P., & Langdon, T. G., (2008). Using high-pressure torsion for metal processing: Fundamentals and applications. Progress in Materials Science, 53 (6), 893–979.

Zhou, S. M., Zhang, X. B., Ding, Z. P., Min, C. Y., Xu, G. L., & Zhu, W. M. (2007). Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique. Composites Part A: Applied Science and Manufacturing, 38(2), 301-306.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

The Pertanika Journal of Scholarly Research Reviews, (e-ISSN: 2462-2028, ISSN: 2636-9141) published by Universiti Putra Malaysia Press