Horizontal Gene Transfer: A Vehicle for the Dissemination of Resistance and Virulence Determinants during Colonization and Disease

Asinamai Athliamai Bitrus, Zunita Zakaria, Siti Khairani Bejo, Sarah Othman

Abstract


The successful in vivo horizontal transfer of mobile genetic elements carrying resistance and virulence determinants have contributed immensely to a global dissemination of virulent and multi-drug resistant pathogens. In addition, the pathogenesis of MRSA infection is enhanced via initial colonization of the skin through the component of the microbial surface antigen recognizing adhesive matrix molecules and by their ability to evade host immune response. Furthermore, it was also observed that the genetic diversity of pathogenic MRSA is due to its’ ability to rapidly acquire resistance and virulence determinants. A characteristic feature that made it one of the most important nosocomial pathogen worldwide. Similarly, the expression of virulence gene in MRSA has been observed to be regulated by the accessory gene regulator system (agr). These system is made up of a series of genes whose product build up quorum-sensing regulatory mechanisms that is growth dependent. In addition, at a certain growth stage, the agr systems triggers a pronounced changes in the expression of genes called the quorum sensing. The findings of this review affirms the importance of horizontal gene transfer in the dissemination of resistance and virulence determinants and as well as the genetic diversity of MRSA.

Full Text:

PDF

References


Al-Talib, H., Yean, C. Y., Hasan, H., Nik Zuraina, N.M., & Ravichandran, M. (2013). Methicillin-resistant Staphylococcus aureus nasal carriage among patients and healthcare workers in a hospital in Kelantan, Malaysia. Polish Journal of Microbiology, 62(1), 109-112.

Balaban, N., L. V. Collins., J. S. Cullor., E. B. Hume., E. Medina-Acosta., O. Vieira da Motta., R. O’Callaghan., P. V. Rossitto., M. E. Shirtliff., L. Serafim da Silveira., A. Tarkowski., and J. V. Torres. (2000). Prevention of diseases caused by Staphylococcus aureus using the peptide RIP. Peptides 21:1301– 1311.

Balaban, N., A. Giacometti., O. Cirioni., Y. Gov., R. Ghiselli., F. Mocchegiani., C. Viticchi., M. S. Del Prete., V. Saba., G. Scalise., and G. Dell’Acqua. (2003). Use of the quorum-sensing inhibitor RNAIII-inhibiting peptide to prevent biofilm formation invivo by drug-resistant Staphylococcus epidermidis.J.Infect. Dis. 187:625–630.

Balaban, N., T. Goldkorn., Y. Gov., M. Hirshberg., N. Koyfman., H. R. Matthews., R. T. Nhan., B. Singh, and O. Uziel. (2001). Regulation of Staphylococcus aureus pathogenesis via target of RNAIII-activating protein (TRAP). J. Biol. Chem. 276:2658–2667.

Balaban, N., T. Goldkorn., R. T. Nhan., L. B. Dang., S. Scott., R. M. Ridgley., A. Rasooly., S. C. Wright., J. W. Larrick., R. Rasooly., and J. R. Carlson. (1998). Autoinducer of virulence as a target for vaccine and therapy against Staphylococcus aureus. Science 280:438–440.

Balaban, N., Y. Gov., A. Bitler., and J. R. Boelaert. (2003). Prevention of Staphylococcus aureus biofilm on dialysis catheters and adherence to human cells. Kidney Int. 63:340–345.

Bloemendaal, A.L.A., Brouwer, E. C, & Fluit, Ad C. (2010). Methicillin resistance transfer from Staphylocccus epidermidis to methicillin-susceptible Staphylococcus aureus in a patient during antibiotic therapy. PLoS One, 5(7), e11841.

Booth, M. C., Cheung, A. L., Hatter, K. L., Jett, B. D., Callegan, M. C., & Gilmore, Michael S. (1997). Staphylococcal accessory regulator (sar) in conjunction with agr contributes to Staphylococcus aureus virulence in endophthalmitis. Infection and immunity, 65(4), 1550-1556.

Bosch, T., Verkade, E., van Luit, M., Landman, F., Kluytmans, J., & Schouls, L.M. (2015). Transmission and Persistence of Livestock-Associated Methicillin-Resistant Staphylococcus aureus among Veterinarians and Their Household Members. Applied and environmental microbiology, 81(1), 124-129.

Chambers, H. F. (2001). The changing epidemiology of Staphylococcus aureus? Emerging infectious diseases, 7(2), 178.

Cheung, G.Y.C., Wang, R., Khan, B. A., Sturdevant, D.E., & Otto, Michael. (2011). Role of the accessory gene regulator agr in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. Infection and immunity, 79(5), 1927-1935.

Chiu, Y-K., Lo, W-T., & Wang, Chih-Chien. (2012). Risk factors and molecular analysis of Panton-Valentine leukocidin-positive methicillin-susceptible Staphylococcus aureus colonization and infection in children. Journal of Microbiology, Immunology and Infection, 45(3), 208-213. doi: http://dx.doi.org/10.1016/j.jmii.2011.11.011

Chua, K.Y. L., Howden, B. P., Jiang, J-H., Stinear, T, & Peleg, A.Y. (2014). Population genetics and the evolution of virulence in Staphylococcus aureus. Infection, Genetics and Evolution, 21(0), 554-562. doi: http://dx.doi.org/10.1016/j.meegid.2013.04.026

Cuny, C., Nathaus, R., Layer, F., Strommenger, B., Altmann, D., & Witte, W. Nasal colonization of humans with methicillin-resistant Staphylococcus aureus (MRSA) CC398 with and without exposure to pigs.

Cuny, C., & Witte, W., MRSA in equine hospitals and its significance for infections in humans. Veterinary Microbiology. doi: http://dx.doi.org/10.1016/j.vetmic.2016.01.013

De Boer, E., Zwartkruis-Nahuis, J. T. M., Wit, B., Huijsdens, X. W., de Neeling, A. J., Bosch, T., . . . Heuvelink, A. E. (2009). Prevalence of methicillin-resistant Staphylococcus aureus in meat. International Journal of Food Microbiology, 134(1–2), 52-56. doi: http://dx.doi.org/10.1016/j.ijfoodmicro.2008.12.007

Fux, C. A., Costerton, J. W., Stewart, P. S., & Stoodley, P. (2005). Survival strategies of infectious biofilms. Trends in Microbiology, 13(1), 34-40. doi: http://dx.doi.org/10.1016/j.tim.2004.11.010

García-Álvarez, L., Holden, M. T. G., Lindsay, H., Webb, C. R., Brown, D. F. J., Curran, M. D., . . . Holmes, M. A. (2011). Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. The Lancet Infectious Diseases, 11(8), 595-603. doi: http://dx.doi.org/10.1016/S1473-3099(11)70126-8

Goni, P., Vergara, Y., Ruiz, J., Albizu, I., Vila, J., & Gomez-Lus, R. (2004). Antibiotic resistance and epidemiological typing of Staphylococcus aureus strains from ovine and rabbit mastitis. International journal of antimicrobial agents, 23(3), 268-272.

Gordon, R. J, & Lowy, F. D. (2008). Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clinical Infectious Diseases, 46(Supplement 5), S350-S359.

Kelly, B. G., Vespermann, A., & Bolton, D. J. (2009). Horizontal gene transfer of virulence determinants in selected bacterial foodborne pathogens. Food and Chemical Toxicology, 47(5), 969-977. doi: http://dx.doi.org/10.1016/j.fct.2008.02.007

Kennedy, A. D, & DeLeo, Frank R. (2009). Epidemiology and virulence of community-associated MRSA. Clinical Microbiology Newsletter, 31(20), 153-160.

Kluytmans, J., Van Belkum, A., & Verbrugh, H. (1997). Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clinical microbiology reviews, 10(3), 505-520.

Köck, R., Schaumburg, F., Mellmann, A., Köksal, M., Jurke, A., Becker, K., & Friedrich, A. W. (2013). Livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) as causes of human infection and colonization in Germany.

Kwon, N. H., Park, K.T., Jung, W. K., Youn, H. Y., Lee, Y., Kim, S. H., . . . Kim, Jun Man. (2006). Characteristics of methicillin resistant Staphylococcus aureus isolated from chicken meat and hospitalized dogs in Korea and their epidemiological relatedness. Veterinary microbiology, 117(2), 304-312.

Lamy, B., Laurent, F., Gallon, O., Doucet-Populaire, F., Etienne, J., & Decousser, J-W. (2012). Antibacterial resistance, genes encoding toxins and genetic background among Staphylococcus aureus isolated from community-acquired skin and soft tissue infections in France: a national prospective survey. European journal of clinical microbiology & infectious diseases, 31(6), 1279-1284.

Larsen, J., Imanishi, M., Hinjoy, S., Tharavichitkul, P., Duangsong, K., Davis, M.F, . . . Skov, R.L. (2012). Methicillin-resistant Staphylococcus aureus ST9 in pigs in Thailand. PloS one, 7(2), e31245.

Lee., J. C. (1995). Electrotransformation of staphylococci Electroporation protocols for microorganisms (pp. 209-216): Springer

Lee, J.H. (2003). Methicillin (oxacillin)-resistant Staphylococcus aureus strains isolated from major food animals and their potential transmission to humans. Applied and Environmental Microbiology, 69(11), 6489-6494.

Leonard, F.C., & Markey, B.K. (2008). Meticillin-resistant Staphylococcus aureus in animals: A review. The Veterinary Journal, 175(1), 27-36.

Lindsay, J. A. (2014). Evolution of Staphylococcus aureus and MRSA during outbreaks. Infection, Genetics and Evolution, 21, 548-553.

Lindqvist, M. (2014). Epidemiological and molecular biological studies of multi-resistant methicillin-susceptible Staphylococcus aureus.

Liu, G. Y. (2009). Molecular pathogenesis of Staphylococcus aureus infection. Pediatric research, 65, 71R-77R.

Luzzago, C., Locatelli, C., Franco, A., Scaccabarozzi, L., Gualdi, V., Viganò, R., . . . Battisti, A. (2014). Clonal diversity, virulence-associated genes and antimicrobial resistance profile of Staphylococcus aureus isolates from nasal cavities and soft tissue infections in wild ruminants in Italian Alps. Veterinary Microbiology, 170(1–2), 157-161. doi: http://dx.doi.org/10.1016/j.vetmic.2014.01.016

Maree, C. L., Daum, R. S., Boyle-Vavra, S., Matayoshi, K., & Miller, L.G. (2007). Community-associated methicillin-resistant Staphylococcus aureus isolates and healthcare-associated infections. Emerging infectious diseases, 13(2), 236.

Morgan, M. (2008). Methicillin-resistant Staphylococcus aureus and animals: zoonosis or humanosis? Journal of Antimicrobial Chemotherapy, 62(6), 1181-1187.

Noto, M. J., Kreiswirth, B.N, Monk, A. B, & Archer, G. L. (2008). Gene acquisition at the insertion site for SCCmec, the genomic island conferring methicillin resistance in Staphylococcus aureus. Journal of bacteriology, 190(4), 1276-1283.

O’Mahony, R., Abbott, Y., Leonard, F.C., Markey, B.K., Quinn, P.J., Pollock, P.J., . . . Rossney, A.S. (2005). Methicillin-resistant Staphylococcus aureus (MRSA) isolated from animals and veterinary personnel in Ireland. Veterinary microbiology, 109(3), 285-296.

Oliveira, D.C., Tomasz, A., & de Lencastre, H. (2002). Secrets of success of a human pathogen: molecular evolution of pandemic clones of meticillin-resistant Staphylococcus aureus. The Lancet infectious diseases, 2(3), 180-189.

Pantosti, A., Sanchini, A., & Monaco, M. (2007). Mechanisms of antibiotic resistance in Staphylococcus aureus.

Peacock, S.J., Moore, C. E, Justice, A., Kantzanou, M., Story, L., Mackie, K., . . . Day, Nicholas PJ. (2002). Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus. Infection and immunity, 70(9), 4987-4996.

Peton, V, & Le Loir, Y. (2014). Staphylococcus aureus in veterinary medicine. Infection, Genetics and Evolution, 21, 602-615.

Petersen, A., Stegger, M., Heltberg, O., Christensen, J., Zeuthen, A., Knudsen, L. K, . . . Larsen, J. (2013). Epidemiology of methicillin‐resistant Staphylococcus aureus carrying the novel mecC gene in Denmark corroborates a zoonotic reservoir with transmission to humans. Clinical Microbiology and Infection, 19(1), E16-E22.

Plata, K., Rosato, A. E., & Wegrzyn, G. (2009). Staphylococcus aureus as an infectious agent: overview of biochemistry and molecular genetics of its pathogenicity. Acta Biochimica Polonica, 56(4), 597.

Price, J. R., Didelot, X., Crook, D. W., Llewelyn, M. J., & Paul, J. (2013). Whole genome sequencing in the prevention and control of Staphylococcus aureus infection. Journal of Hospital Infection, 83(1), 14-21. doi: http://dx.doi.org/10.1016/j.jhin.2012.10.003

Raffa, R. B., Iannuzzo, J. R., Levine, D. R., Saeid, K. K., Schwartz, R. C., Sucic, N. T, . . . Young, J. M. (2005). Bacterial communication (“quorum sensing”) via ligands and receptors: a novel pharmacologic target for the design of antibiotic drugs. Journal of Pharmacology and Experimental Therapeutics, 312(2), 417-423.

Rapacka-Zdonczyk, A., Larsen, A. R., Empel, J., Patel, A., & Grinholc, M. (2014). Association between susceptibility to photodynamic oxidation and the genetic background of Staphylococcus aureus. European Journal of Clinical Microbiology & Infectious Diseases, 33(4), 577-586.

Rasigade, J-P, & Vandenesch, F. (2014). Staphylococcus aureus: A pathogen with still unresolved issues. Infection, Genetics and Evolution, 21(0), 510-514. doi: http://dx.doi.org/10.1016/j.meegid.2013.08.018

Saleha, A, & Zunita, Z. (2010). Methicillin resistant Staphylococcus aureus (MRSA): An emerging veterinary and zoonotic pathogen of public health concern and some studies in Malaysia. J Anim Vet Adv, 9(7), 1094-1098.

Salgado, C. D., Farr, B. M., & Calfee, D. P. (2003). Community-acquired methicillin-resistant Staphylococcus aureus: a meta-analysis of prevalence and risk factors. Clinical Infectious Diseases, 36(2), 131-139.

Shaw, L., Golonka, E., Potempa, J., & Foster, S. J. (2004). The role and regulation of the extracellular proteases of Staphylococcus aureus. Microbiology, 150(1), 217-228.

Stewart, P. S., & William Costerton, J. (2001). Antibiotic resistance of bacteria in biofilms. The Lancet, 358(9276), 135-138. doi: http://dx.doi.org/10.1016/S0140-6736(01)05321-1

Springer, B., Orendi, U., Much, P., Höger, G., Ruppitsch, W., Krziwanek, K., . . . Mittermayer, H. (2009). Methicillin-resistant Staphylococcus aureus: a new zoonotic agent? Wiener klinische Wochenschrift, 121(3-4), 86-90.

Toh, S‐M., Xiong, L., Arias, C. A., Villegas, M. V., Lolans, K., Quinn, J., & Mankin, A. S. (2007). Acquisition of a natural resistance gene renders a clinical strain of methicillin‐resistant Staphylococcus aureus resistant to the synthetic antibiotic linezolid. Molecular microbiology, 64(6), 1506-1514.

van Cleef, B. A. G. L., Monnet, D. L., Voss, A., Krziwanek, K., Allerberger, F., Struelens, M., . . . Cuny, C. (2011). Livestock-associated methicillin-resistant Staphylococcus aureus in humans, Europe. Emerging infectious diseases, 17(3), 502.

Yarwood, J.M., Bartels, D.J., Volper, E.M, & Greenberg, E.P. (2004). Quorum sensing in Staphylococcus aureus biofilms. Journal of bacteriology, 186(6), 1838-1850.

Zunita, Z, Bashir, A, & Hafizal, A. (2008). Occurrence of Multidrug Resistant Staphylococcus aureus in horses in Malaysia. Veterinary World, 1(6), 165-167.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

The Pertanika Journal of Scholarly Research Reviews, (e-ISSN: 2462-2028, ISSN: 2636-9141) published by Universiti Putra Malaysia Press