Active and Passive Compliance Mechanisms in Legged Robot Locomotion

Shing-Yan Loo, S.H. Tang, Mashohor Syamsiah

Abstract


Legged robot locomotion is a challenging field. Problems can occur during locomotion such as morphology, controller, and ambience factor, to name a few. However, there are always trade-offs in designing legged robots, for example, speed against stability, number of limbs against complexity of controller, and mass of the robot against energy consumption of the actuators. Therefore, the problems can be minimized when the hardware and software complement each other. Active compliance mechanism describes a closed-loop system which actively sense-and-act according to the surroundings. Passive compliance mechanism, as its name suggests, is a regulatory mechanism in which it does not rely on the controller to actively respond in order to achieve adaptability. The composition materials of a legged robot provide the advantages during locomotion. In this review, we are going to investigate the differences of the mechanisms and how they can be complemented to diminish problems during locomotion.

Full Text:

PDF

References


Bailey, S. A., Cham, J. G., Cutkosky, M. R., & Full, R. J. (2000). Biomimetic robotic mechanisms via shape deposition manufacturing. Robotics Research-International Symposium, 9, 403-410.

Baumeister, R. F., DeWall, C. N., Vohs, K. D., & Alquist, J. L. (2010). Does emotion cause behavior (Apart from Making People Do Stupid, Destructive Things)? In Agnew, C. R., Carlston, D. E., Graziano, W. G., & Kelly, J. R. (Eds.) Then a miracle occurs: Focusing on behavior in social psychological theory and research (pp. 119-136). New York: Oxford University Press.

Baumeister, R. F., Vohs, K. D., DeWall, C. N., & Zhang, L. (2007). How emotion shapes behavior: Feedback, anticipation, and reflection, rather than direct causation. Personality and Social Psychology Review, 11(2), 167-203.

Baumeister, R. F., Stillwell, A. M., & Heatherton, T. F. (1994). Guilt: an interpersonal approach.

Psychological Bulletin, 115(2), 243.

Böttcher, S. (2006). Principles of robot locomotion. In Proceedings of Human Robot Interaction Seminar.

Brooks, R. (1991). New approaches to robotics. Science, 253(5025), 1227-1232.

Brown, B., & Zeglin, G. (1998). The bow leg hopping robot. In Proceedings of the International Conference on Robotics and Automation (Volume 1, pp. 781-786).

Buchli, J., Kalakrishnan, M. Mistry, M., Pastor, P., & Schaal, S. (2009). In Proceedings of the International Conference on Intelligent Robots and Systems (pp.814-820).

Carver, C. S., Sutton, S. K., & Scheier, M. F. (2000). Action, emotion, and personality: Emerging conceptual integration. Personality and Social Psychology Bulletin, 26(6), 741-751.

Charm, J. G., Karpick, J. K., & Cutkosky, M. R. (2004). Stride period adaptation of a biomimetic running hexapod. The International Journal of Robotics Research, 23(2). 141-153.

Collins, S. H., Wisse, M., & Ruina, A. (2001). A three-dimensional passive-dynamic walking robot with two legs and knees. The International Journal of Robotics Research, 20(7), 607-615.

De Santos, P. G., Estremera, J., & Garcia, E. (2005). Optimizing leg distribution around the body in walking robots. In Proceedings of the IEEE International Conference on Robotics and Automation (pp. 3207-3212).

Fujimoto, Y., & Kawamura, A. (1998) Simulation of an autonomous biped walking robot including environmental force interaction. IEEE Robotics & Automation Magazine, 5(2), 33-42.

Galloway, K. C., Clark, J. E., Yim, M., & Koditschek, D. E. (2011). Experimental investigations into the role of passive variable compliant legs for dynamic robotic locomotion. In Proceedings of the International Conference on Robotics and Automation (pp. 1243-1249).

Ham, R. V., Sugar, T. G., Vanderborght, B., Hollander, K. W., & Lefeber, D. (2009). Compliant actuator designs. Robotics & Automation Magazine, IEEE, 16(3), 81-94.

Hutter, M., Remy, C. D., Hoepflinger, M., & Siegwart, R. (2011, September). Scarleth: Design and control of a planar running robot. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS) (pp. 562-567).

Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: A review. Neural Networks, 21(4), 642-653.

Jones, M. S., & Hurst, J. W. (2012). Effects of leg configuration on running and walking robots. In Proceedings of the 5th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (pp. 519-526).

Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Yokoi, K., & Hirukawa, H. (2002). In Proceedings of the IEEE International Conference on Robotics and Automation (Volume 1, pp. 31-37).

Kim, S., Clark, J. E., & Cutkosky, M. R. (2006). iSprawl: Design and tuning for high-speed autonomous open-loop running. The International Journal of Robotics Research, 25(9), 903-912.

Kimura, H., Fukuoka, Y., & Cohen, A. H. (2007). Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. The International Journal of Robotics Research, 26(5), 475-490.

Kani, M. H. H., Derafshian, M., Bidgoly, H. J., & Ahmadabadi, M. N. (2011). Effect of flexible spine on stability of a passive quadruped robot: Experimental results. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 2793-2798).

Kaplan, F. (2000). Talking AIBO: First experimentation of verbal interactions with an autonomous four-legged robot. Learning to behave: interacting agents CELE-TWENTE Workshop on Language Technology (pp. 57-63).

Kato, K., & Hirose, S. (2001). Development of the quadruped walking robot, TITAN-IX—mechanical design concept and application for the humanitarian de-mining robot. Advanced Robotics, 15(2), 191-204.

Manjanna, S., & Dudek, G. (2015). Autonomous gait selection for energy efficient walking. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 5155-5162).

McGeer, T. (1990). Passive dynamic walking. The International Journal of Robotics Research, 9(2), 62-82.

Mizuuchi, I., Inaba, M., & Inoue, H. (2001). A flexible spine human-form robot-development and control of the posture of the spine. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (Volume 4, pp. 2099-2104).

Moore, J.M., McGowan, C. P & McKinley, P.K. (2015) Evaluating the Effect of a Flexible Spine on the Evolution of Quadrupedal Gaits. In Proceedings of the European Conference on Artificial Life (pp. 166-173).

Natali, A. N., & Meroi, E. A. (1989). A review of the biomechanical properties of bone as a material.

Journal of Biomedical Engineering, 11(4), 266-276.

Omer, A., Ghorbani, R., Lim, H., & Atsuo Takanishi (2011). Semi-Passive Dynamic Walking Approach for Bipedal Humanoid Robot Based on Dynamic Simulation. In Armando Carlos Pina Filho (Ed.), Biped Robots (pp. 99-114). Rijeka, Croatia: InTech.

Poulakakis, I., Smith, J. A., & Buehler, M. (2005). Modeling and experiments of untethered quadrupedal running with a bounding gait: The Scout II robot. The International Journal of Robotics Research, 24(4), 239-256.

Pratt, G., & Williamson, M. M. (1995). Series elastic actuators. In Proceedings of the International Conference on Intelligent Robots and Systems (Volume 1, pp. 399-406).

Rittweger, J., Beller, G., Ehrig, J., Jung, C., Koch, U., Ramolla, J., Schmidt, F., Newitt, D., Majumdar, S., Schiessl, S., & Felsenberg, D. (2000). Bone-muscle strength indices for the human lower leg. Bone, 27(2), 319-326.

Scarfogliero, U., Stefanini, C., & Dario, P. (2009). The use of compliant joints and elastic energy storage in bio-inspired legged robots. Mechanism and Machine Theory, 44(3), 580-590.

Subit, D., de Dios, E. D. P., Valazquwz-Ameijide, J., Arregui-Dalmases, C., & Crandall, J. (2011). Tensile material properties of human rib cortical bone under quasi-static and dynamic failure loading and influence of the bone microstructure on failure characteristics. arXiv preprint, arVix:1108. Retrieved from http://arxiv.org/abs/1108.0390

Takuma, T., Ikeda, M., & Masuda, T. (2010). Facilitating multi-modal locomotion in a quadruped robot utilizing passive oscillation of the spine structure. In Proceedings of the International Conference on Intelligent Robots and Systems (pp. 4940-4945).

Van Ham, R., Vanderborght, B., Verrelst, B., Van Damme, M., & Lefeber, D. (2006). Controlled passive walker Veronica powered by actuators with independent control of equilibrium position and compliance. In Proceedings of the IEEE International Conference on Humanoid Robots (pp. 234-239).

Vukobratović, M., & Borovac, B. (2004). Zero-moment point—thirty five years of its life. International Journal of Humanoid Robotics, 1(01), 157-173.

Weingarten, J. D., Lopes, G. A., Buehler, M., Groff, R. E., & Koditschek, D. E. (2004). Automated gait adaptation for legged robots. In Proceedings of the IEEE International Conference on Robotics and Automation (Volume 3, pp. 2153-2158).

Wood, W., Quinn, J. M., & Kashy, D. A. (2002). Habits in everyday life: thought, emotion, and action.

Journal of Personality and Social Psychology, 83(6), 1281.

Xiong, X, Worgotter, F., & Manoonpong, P. (2015). Adaptive and energy efficient walking in a hexapod robot under neuromechanical control and sensorimotor learning. IEEE Transactions on Cybernetics. Advance online publication. doi: 10.1109/TCYB.2015.2479237

Zhao, Q., Sumioka, H., & Pfeifer, R. (2011). The effect of robot morphology on locomotion from the perspective of spinal engine in a quadruped robot. In Proceedings of the International Conference on Morphological Computation (pp. 130-132).


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

The Pertanika Journal of Scholarly Research Reviews, (e-ISSN: 2462-2028, ISSN: 2636-9141) published by Universiti Putra Malaysia Press